
DOI 10.1515/jmbm-2012-0024      J Mech Behav Mater 2012; 21(3-4): 123–146

        Andr é  A.   Keller    *    

  Reaction-diffusion systems in natural sciences 
and new technology transfer  
     Abstract:   Diffusion mechanisms in natural sciences 

and innovation management involve partial differential 

equations (PDEs). This is due to their spatio-temporal 

dimensions. Functional semi-discretized PDEs (with 

lattice spatial structures or time delays) may be even 

more adapted to real world problems. In the modeling 

process, PDEs can also formalize behaviors, such as the 

logistic growth of populations with migration, and the 

adopters ’  dynamics of new products in innovation mod-

els. In bio logy, these events are related to variations in 

the environment, population densities and overcrowd-

ing, migration and spreading of humans, animals, 

plants and other cells and organisms. In chemical reac-

tions, molecules of different species interact locally and 

diffuse. In the man a gement of new technologies, the dif-

fusion processes of innovations in the marketplace (e.g., 

the mobile phone) are a major subject. These innovation 

diffusion models refer mainly to epidemic models. This 

contribution introduces that modeling process by using 

PDEs and reviews the essential features of the dynam-

ics and control in biological, chemical and new tech-

nology transfer. This paper is essentially user-oriented 

with basic nonlinear evolution equations, delay PDEs, 

several analytical and numerical methods for solving, 

different solutions, and with the use of mathematical 

packages, notebooks and codes. The computations are 

carried out by using the software Wolfram Mathema-

tica  ®  7, and C +  +  codes.   
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1    Introduction 

 This introductive paper  1    is devoted to diffusion processes 

as they occur in population dynamics studies of biologi-

cal and ecological domains  2    , and in adopter ’ s dynamics 

of new products in the marketing area  3    . The importance of 

this subject is reflected in a vast literature since the seminal 

article of Skellam in 1951 [Skellam JG.  Biometrika  1951, 38, 

196 – 218] on the random population dispersal in a linear and 

two-dimensional habitat. This paper consists of three main 

parts about the wave propagation phenomena, the diffu-

sion process and the illustrative application to domains, 

such as population dynamics, chemical kinetics and the 

spatio-temporal diffusion of technological innovations.  

2    Wave propagation phenomena 
 The propagation phenomena embody the dispersive and 

diffusive aspects of wave phenomena. This introductive 

presentation is on the nonlinear wave propagation in dif-

ferent areas of applications. Firstly, we present the differ-

ent types of waves, the basic concepts of wave motion, the 

dispersion relation for simple wave equations, the wave 

equation and d ’ Alembert ’ s solution. A second aspect of this 

introduction concerns the traveling waves and soliton solu-

tions for which the tanh-function method is preconized, 

among numerous analytical and numerical techniques for 

solving PDEs. A third aspect introduces the adaptation of 

the tanh-function method to semi-discretized differential 

systems such as systems with lattice spatial structures. 

2.1    Nonlinear wave propagation 

 Nonlinear wave phenomena occur in many areas of 

natural sciences, such as fluid dynamics, chemistry 

 1   This paper is based on a Plenary Lecture [1], held at the WSEAS 

International Conference System in 2012. 

 2   A brief history of mathematical diffusion in ecology is presented 

in [2]. 

 3   The basic deterministic and stochastic innovation diffusion 

models are introduced in [3]. 
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(e.g., chemical kinetics involving reactions), mathemati-

cal biology (e.g., population dynamics) and solid state 

physics (lattice vibration). In physics, a wave describes 

a disturbance that is propagating through space and 

time with energy transfer. Waves may be illustrated 

by mechanical waves (i.e., waves on strings, acous-

tic waves, water waves, seismic waves, etc.), quantum 

mechanical waves, electromagnetic waves and also 

gravitational waves. There are different types of waves: 

mechanical waves and electromagnetic waves requiring 

or not requiring a medium, respectively, and transverse 

or longitudinal waves depending on the direction of their 

oscillations. Transverse waves have perpendicular oscil-

lations to the direction of propagation (the direction of 

energy transfer). On the contrary, longitudinal waves 

have parallel oscillations. Mechanical waves can possess 

these two properties, whereas all electromagnetic waves 

are transverse. 

2.1.1    Wave motion 

 The simplest propagating and unchanging one-dimen-

sional (1D) wave is the sine wave, which elevation is given
 

by  u ( x, t )  =   A  sin(  θ  ( x, t )) with 
  

2 - - ,
x t

kx t
T

θ π ω
λ

⎛ ⎞= =⎝ ⎠  where
 

 A  denotes the amplitude  4   ,   θ  ( x, t ) the phase function (in 

radians),   λ   the wavelength (in meters),  T  the period, i.e., 

the time for a complete oscillation (in seconds),  k (  =  2  π  /  λ  ) 

the wave number (in radian per meter) and   ω   the angular 

frequency (in radians per second). Both measurements 

 k  and   ω   evaluate the wave oscillation in space and time, 

respectively. The phase function may also be written as 

  
( )2

- ,x vt
π

θ
λ

=  where   ν   is the phase velocity, i.e., the speed
 

at which the wave is travelling. A generalized modulated 

wave takes the form  u ( x, t )  =   A ( x, t )sin( kx -  ω t  +   φ  ), where 

 A ( x, t ) denotes an amplitude envelope of the wave and   φ   

the phase.  

2.1.2    Dispersion relation 

 The simplest wave equation for propagating to the right is 

the first order linear PDE  u  
 t 
   =  - cu  

 x 
  with propagation speed 

 c  (in units per second) and without changing its form. 

Supposing a sinuosidal solution, the dispersion relation 

(i.e., how the frequency depends on the wave number) is 

simply   ω    =   ck . The phase velocity is determined  5     by   ν   
 p 
   =    ω  / k . 

 Suppose that the traveling wave pulse can be broken 

into two simpler component waves of the form  u  
 i 
   =   A  

sin( k  
 i 
  x -  ω   

 i 
  t ),  i   =  1,2. By adding the wave components, we 

find the wave packet  u   =   A  sin( k  
 a 
  x -  ω   

 a 
  t )sin( k  

 m 
  x -  ω   

 m 
  t ). In the 

first part of the expression,  k  
 a 
  and   ω   

 a 
  denote the average 

wave number and frequencies, respectively. In the second 

part,   1 2-

2
m

k k
k =  is half the difference of the wave numbers, 

and 
  

1 2-

2
m

ω ω
ω =  is the modulation frequency  6   . We deduce

 

the group velocity  ν  
 g 
 , i.e., the speed at which the wave 

packet is traveling 
  

ω ω
Δ →

Δ= =
Δ0

lim .g
k

d
v

k dk  

 Suppose that the simplest wave equation is now 

 u  
 t 
   =    β u  

 xxx 
 - cu  

 x 
 . Assuming sinusoidal solutions of the form 

 u   =   A  sin( kx -  ω t ), substituting into the PDE and rearranging 

terms, we easily find the dispersion relation   ω    =    β k  3  +  ck , 

the phase velocity  v  
 p 
   =    β k  2  +  c  and the group velocity is 

 v  
 g 
   =  3  β k  2  +  c . 

More generally, the dispersion relation for the fre-

quency   ω   of 1D waves of wave number  k  is expressed by 

  ω    =    ω  ( k ). Thus, in the dispersive case, waves of different 

frequencies have different velocities (e.g., electromag-

netic wave in medium), whereas in the non-dispersive 

case, waves of different frequency have the same velocity 

(e.g., electromagnetic waves in vacuum). The phase speed 

being expressed by   
( )ω

= ,
k

v
k

  v  is independent of  k  for all  k , 

only if   ω  ( k )  =   C . Non-dispersive waves imply that all distur-

bances propagate without deformation.   

2.1.3   Wave equation  7     

 The most familiar hyperbolic wave equation is: 

   u  
 tt 
   =   c  2  Δ  u ,  (1) 

 where  Δ  denotes the Laplace operator. A wave equation 

describes the propagation of a disturbance (e.g., the 

vibration of a string). The wave operator (or d'Alembertian 

operator) can be expressed by:     ∂ ∇ ≡ �2 2 2- .t cc   

 4   The unit of the amplitude depends on the type of waves: transverse 

mechanical waves in meters, longitudinal sound waves in pressure 

units, electromagnetic waves in volts/meter. 

 5   The phase velocity is deduced algebraically from the formulas: 

  λ    =  2  π  / k ,  T   =  2  π  /  ω   and   λ    =   vT . 

 6   This property is deduced from the identity [4]:  

 

( ) ( ) -
sin sin sin sin .

2 2

α β α β
α β

+⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 7   Inspired from [5], pp. 94 – 97, with different notations. 
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 Factoring the wave operator as ( ∂  
 t 
 - c  ∂  

 x 
 )( ∂  

 t 
  +  c  ∂  

 x 
 ), sug-

gests the transformation to the characteristic coordi-

nates   ξ  ,  η   for which   ξ    =   x - ct  and   η    =   x  +  ct . The wave equa-

tion becomes   2 0,uξη∂ =  for which the general solution is 

 u (  ξ  ,  η  )  =   F (  ξ  ) +  G (  η  ). Back-transforming to the coordinates 

 x , t , the general solution is:    u ( x , t )  =   F ( x - ct ) +  G ( x  +  ct ). 

 Suppose that there exist boundary conditions on the 

initial displacement (shape)  u ( x ,0)  =   f ( x ) and on the initial 

velocity  u  
 t 
 ( x ,0)  =   g ( x ). The boundary conditions (BCs) 

imply the system: 

   F ( x ) +  G ( x )  =   f ( x ), (2) 

 and 

   cG  ′ ( x )- cF  ′ ( x )  =   g ( x ).  (3) 

 Integrating (3), we obtain: 

    
( ) ( ) ( ) ( ) ( )

0
0 0

1
- - .

x

x
G x F x G x F x g s ds

c
= + ∫

 

 
 

 
 (4) 

 The expressions for  F ( x ) and  G ( x ) are obtained by 

solving the system (2) to (4). Substituting their respective 

arguments  x - ct  and  x  +  ct  into  F  and  G  yields the system: 

   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

-

0 0

0 0

1 1 1 1
- - - -

2 2 2 2
1 1 1 1

-
2 2 2 2

x ct

x

x ct

x

F x ct G x F x f x ct g s ds
c

G x ct F x G x f x ct g s ds
c

+

⎤= + + ⎥
⎥
⎥+ = + + + + ⎥⎦

∫

∫
 

 Combining the two integrals into a single term, the 

general d ’ Alembert ’ s solution for the wave equation takes 

the form: 

   
( ) ( ) ( )( ) ( )

-

1 1
, - .

2 2

x ct

x ct
u x t f x ct f x ct g s ds

c

+
= + + + ∫  

 

 The value of the solution at position  x  and time  t  

depends on the initial values of  f  at  x - ct  and  x  +  ct , and on 

the values of  g  between these points. This represents the 

sum of two simple waves and reflects the superposition 

principle for the linear equations. These two waves are 

propagating in opposite directions with a constant phase 

speed  ⎪  c  ⎪ . Because the phase speed is independent of the 

wave number, these waves are non-dispersive. The solu-

tions of the Cauchy boundary initial value problem (BIVP) 

are shown in Figure  1  . The phase speed is unity. The BCs 

are the initial displacement   ( )
2-xf x e=  and the initial 

velocity  g ( x )  =  0, as in  [5] , p. 95.   

2.2    Traveling wave and soliton solutions 

 The traveling wave is a solution by which waves propa-

gate by right or left translations at a constant velocity. The 

tanh-function method finds these solutions for most non-

linear evolution equations and systems. Cnoidal waves 

are progressing periodic waves that are appropriate to a 

wide range of periodical problems. The soliton is a solitary 

wave maintaining its shape and traveling at a constant 

phase speed. 

2.2.1    Traveling waves  [6, 7]  

 A traveling wave is a function of the form: 

   
( ) ( ), - , : ,u x t f x vt f= � RR R

 

 where    is a vector space    or   . A traveling wave propa-

gates by right translations with velocity  v . Let a polyno-

mial PDE  P  of  u  and its derivatives 

   P ( u , u  
 x 
 , u  

 t 
 , u  

 xx 
 , u  

 xxx 
 , … )  =  0.  (5) 

 Now, consider 

  u ( x , t )  =   U (  ξ  ),   ξ    =   k ( x - vt ). 
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 Figure 1    3D plot (A) and contours (B) of solutions of d ’ Alembert ’ s solution for the wave equation.    
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 The following changes       
2

2

2
- , , ,

d d d
kv k k

t d x d x dξ ξ ξ
∂ ∂ ∂= = =
∂ ∂ ∂

…
 

transform the polynomial PDE into an ordinary differen-

tial equation (ODE) in  U (  ξ  ) 

  Q ( U , U  ′ , U  ″ , U  (3) , … )=0. 

 This equation should be successively integrated as long 

as the equation contains derivatives. Supposing the BCs 

 U (  ξ  ) → 0 and  U  ( n ) (  ξ  ) → 0,  n   =  1,2, …  for   ξ   →   ±   ∞ , the integration 

constants should be zero.  

2.2.2    Tanh-function method  8    

 There is no unified method to find all the solutions of 

nonlinear wave equations. However, there are numerous 

analytical and numerical techniques, such as separation 

approach, inverse scattering, Backlund and Darboux 

transformation, Hirota ’ s bilinear forms and hyperbolic 

tangent. 

 This tanh-method for exact solutions of nonlinear 

evolution equations is restricted to the search of traveling 

wave solutions for a large class of nonlinear PDEs  [20] . Let 

a system of K polynomial differential equations 

   P ( u ( x ),  u  ′ ( x ),  u  ″ ( x ), …   u  ( m )  ( x ))  =  0, (6) 

 where the dependent variable  u  has  K  components and 

the independent variable  x ,  N  components. The traveling 

frame of reference is   
1

,
N

j jj
c xξ δ

=
= +∑  where the compo-

nents  c  
 j 
  of the wave vector  x  and the phase   δ   are constant. 

The method is based on the  a priori  assumption that the 

traveling solution can be expressed in terms of the tanh-

function, such as  Y   =  tanh   ξ  . Applying the chain rule 

repeatedly, the operators   ( )21-j
j j

dY d d
c Y

dY dYx x
ξ

ξ
∂ ∂= =∂ ∂ ∂  

transform the system (6) into a coupled system of nonlin-

ear ODEs  Q ( Y ,  U ( Y ),  U  ′ ( Y ),  U  ″ ( Y ), … )  =   0 .   

 Suppose, a scalar polynomial PDE, as in  [16]  

   P ( u , u  
 t 
 , u  

 x 
 , u  

 xx 
 , … )  =  0,  (7) 

 where   ξ    =   k ( x - vt ), so that  u ( x , t )  =   U (  ξ  ). 

 We use the following changes iteratively   -
d

kv
t dξ

∂ =
∂

, 

  

,
d

k
x dξ
∂ =

∂
   

2 2
2

2 2
.

d
k

x dξ
∂ =

∂
 

 Eq. (7) is then transformed into the reduced ODE: 

   Q ( U , U  ′ , U  ″ , … )  =  0.  (8) 

 The first derivative tanh ′   ξ    =  1-tanh 2   ξ   and all higher-order 

derivatives are polynomials  9    in  Y . We deduce the follow-

ing change of variables: 

    
( )21- ,

d d
Y

d dYξ
=

 

(9) 

    
( ) ( )

2 2
22 2

2 2
-2 1- 1- ,

d d d
Y Y Y

d dY dYξ
= +

 

(10) 

    
( )( ) ( ) ( )

3 2 3
2 32 2 2 2

3 2 3
2 1- 3 -1 -6 1- 1- .

d d d d
Y Y Y Y Y

d dY dY dYξ
= +

 
(11) 

 Next, we conjecture a solution of the polynomial form: 

    
( ) ( )

1

, ,
M

i

i

i

u x t U a Yξ
=

= =∑
  

(12) 

 where the degree  M  must be determined. This para-

meter can be found by balancing the highest order 

derivative terms with the highest power nonlinear 

terms in the reduced ODE. Substituting Eq. (12) into 

Eq. (8), we obtain a set of algebraic equations. In fact, 

all the parameterized coefficients of  Y   i   must vanish. The 

resulting nonlinear algebraic equations for  k , v , a  
0
 , a  

1
 , … , a  

 M 
  

determines these parameters. Then, using Eq. (12), we 

obtain an analytic solution for  u ( x , t ) in a closed form.  

2.2.3    Cnoidal waves and soliton  [21–24]  

 Cnoidal waves are progressing periodic waves. They are 

applied to a wide range of problems in fluid (e.g., surface 

water waves propagating in a canal) and solid mechanics, 

in plasma physics  [25]  and astrophysics  [26] . The formula 

 8   The basic method in [8] is presented in Appendix A. The different 

steps of the tanh-method algorithm are illustrated by the nonlinear 

Boussinesq system in Appendix B. Numerous solutions of PDEs are 

in [9, 10]. Numerical methods for the solutions of PDEs are notably 

in [11–13]. Handbooks of solutions are in [14] for linear PDEs and 

in [15] for nonlinear PDEs. In [16], nonlinear wave equations are 

integrated by using He ’ s variational iteration method, the tanh-

function method, and the ansatz method. Various extensions of 

the tanh-function method are also available, such as the extended 

tanh-function method proposed in [17, 18], by using the properties of 

a Ricatti differential equation. In [19] a trial function method is also 

proposed, with application to the Burgers and Korteweg-de Vries 

equations, and their generalization. 

 9   Owing to the identity [4] cosh 2    ξ  -sinh 2    ξ    =  1, the first three deriva-

tives are: tanh ′   ξ    =  1-tanh 2    ξ    =  1- Y  2 , tanh ″  ξ      =  -2sech 2    ξ   tanh   ξ    =  -2 Y  + 2 Y  3  

and tanh ″    ξ    =  -2sech 4    ξ   + 4sech 2   ξ   tanh 2    ξ    =  -2 + 8 Y -6 Y  4 . 
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for this profile involves the Jacobian elliptic function. Let 

the Korteweg-de Vries (KdV) evolution equation  10      [27] : 

 
2

1
3 0.

3
t x xxxu uu u+ + =

  
(13) 

 This dispersive equation describes unidirectional propaga-

tion of weakly nonlinear and long waves. Assume the trave-

ling wave solution without change of form  u ( x ,  t )  =   u (  ξ  ), with 

traveling wave coordinate   ξ    =   x - Vt  where  V   >  0 denotes the 

phase speed of waves, traveling to the right. The traveling-

wave solutions are obtained by using the following steps 

for the two types of waves, the cnoidal waves and the soli-

tary waves  11   . Substituting  u (  ξ  ) in Eq. (13) yields the ODE: 

   

1
-2 3 0.

3
Vu uu uξ ξ ξ

′ ′ ′″+ + =
 

 Integrating twice yields: 

    
( ) ( )

2 2 3

2 1

1 1
- 0,

6 2
u C C u Vu u f uξ

′ = + + ≡ >
 

(14) 

 where  C  
1
  and  C  

2
  are integration constants. It can be proved 

that  f ( u ) requires three real-valued stationary points  r  
1
 , r  

2
 , r  

3
  

such as  r  
1
    ≤    r  

2
    ≤    r  

3
  to obtain periodic solutions. We have: 

    
( ) ( )( )( )1 2 3

1
- - - - .

2
f u u r u r u r=

 
(15) 

 Comparing Eq. (14) and the expansion of Eq. (15), 

we deduce  12     notably that  V   =  ( r  
1
  +  r  

2
  +  r  

3
 )/2. Defining 

  3 3

, , 1,2,
j

j

ru
v s j

r r
= = =  a crest is at   ξ    =  0 and  v (0)  =  0. Replacing

 

in Eq. (15), we get: 

    ( ) ( )( )( )
2

3 1 23 - - 1- .v r v s v s vξ
′ =  

(16) 

 A further variable is  y (  ξ  ) through: 

   v   =  1 + ( s  
2
 -1) sin 2 ( y ).  (17) 

 Plugging Eq. (17) into Eq. (16) yields: 

( ) ( ) ( )2 22
3 1

1

3 1-
1- 1 sin .

4 1-

s
y r s y

s
ξ
′ ⎛ ⎞

= +⎜ ⎟⎝ ⎠

Then,

    
( )2 21- sin ,

dy
k m y

dξ
=

 
(18) 

 where 
  ( )3 1

3
1-

4
k r s=

 
and 

  
2 2

1

1-

1-

s
m

s
=  with  k   >  0 and  m  2  ∈ [0,1].

 

We may solve Eq. (18) implicitly to obtain: 

    

( )
( )

( )

2 20
| .

1- sin

y d
F y m

k m

ξ θ

θ
=∫

 
(19) 

 The left hand side (LHS) of Eq. (19) is defined, 

for fixed  m , in terms of the inverse of the mapping 

  ( )| .y F y m�  Hence,   ( ) ( )sin sn | .y k mξ=   Therefore, we 

find ( ),v x t =   ( ) ( )2

21 -1 sn | .s k mξ+   Then, the final result 

is of the form  13

 

       

( ) ( ) ( )2

2 3 2 3 1

3
, - cn - | ,

4
u x t r r r r r mξ

⎛ ⎞
= + ⎜ ⎟⎝ ⎠

 
 

 
where ( )1 2 3

1
-

2
x r r rξ= + +  and 

  
3 2

3 1

-
.

-

r r
m

r r
=  Figure  2   on LHS 

shows a 3D plot of the progressive waves of the KdV 

equation.  

2.2.4    Soliton 

 A soliton is a solitary wave, maintaining its shape and 

traveling at a constant phase speed. Lets impose the BCs  

u , u′  
ξ
 ,u″ 

ξ  
  → 0 as   ξ   →   ±  ∞. Then the arbitrary constants  C  

1
 ,  C  

2
  in 

Eq. (14) are zero. When  r  
1
  →  r  

2
  and is taken to be zero, we 

obtain the soliton (see  [21] , pp. 21 – 22 and  [28] ): 

    

( ) ( ) sech2 3
, 2 -

4
u x t V V x Vt

⎛ ⎞
= ⎜ ⎟⎝ ⎠

 

(20) 

  Proof   Eq. (14) becomes: 

    ( ) ( )2 23 - 2u u u Vξ
′ = +

 
(21) 

 A real solution exists only if - u  +  2V   ≥  0. Eq. (21) can be inte-

grated as: 

    
.

-3 6

du
d

u u V
ξ=±

+∫ ∫
 

(22) 

 Using the substitution u =2 V sech2(θ) yields Eq. (20)  14    

 Q.E.D.  ■

 10   The original equation as it was used for water waves in dimen-

sional form was defined by 
  
η η ηη η+ + + = 23 1

0,
2 6

t x x xxx
ggh h
h

 where 

  η  ( x , t ) denotes the surface elevation at the horizontal coordinate 

 x  and time  t ,  g  is gravitational acceleration and  h  is mean water 

depth. 

 11   The complete determination of the cnoidal solutions is available 

at http://www.wikiwaves.org/wiki/index.php ?  title  =  KdV_Cnoidal_

Waves_Solutions&oldid  =  12515 for a standard KdV + + =6 0.t x xxxu uu u  
 12   We have 2 f ( u )  =   r  

1
  r  

2
  r  

3
 -( r  

1
  r  

2
  +  r  

1
  r  

3
  +  r  

2
  r  

3
 ) u  + ( r  

1
  +  r  

2
  +  r  

3
 ) u  2 - u  3 . Comparing 

with Eq. (14), we deduce  ( ) ( )= + + =− + +1 2 3 1 1 2 1 3 2 3/2, /2V r r r C r r r r r r
   =2 1 2 3and /2.C r r r  

 13   The elliptic parameter  m  determines the shape of the cnoidal 

wave: the cnoidal becomes a cosine function for  m   =  0 and gets 

peaked crests and flat through for  m ≈1. 

 14   When integrating Eq. (22), the constant of integration  x  
0
  may be 

ignored. This is the phase shift that indicates the position of the 

peak at  t   =  0. 
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 Figure 2 on right hand side (RHS) shows a 3D plot of 

the soliton of the KdV equation.   

2.3     Hyperbolic tangent solutions of difference-
differential equation systems  15     

 The tanh-function method also solves semi-discretized dif-

ferential systems, where the spatial variable is discrete and 

the time variable is kept continuous. We show how the algo-

rithm for PDEs is modified to take into account the properties 

of difference-differential equations (DDEs) due to shift ele-

ments. This approach is illustrated by the Toda lattice equa-

tion, for which the solutions are computed automatically. 

2.3.1    Difference-differential systems 

 The tanh-method must be adapted to solve the particu-

lar DDEs and systems. In such semi-discretized systems, 

the spatial variables are discrete while the time variable 

is still continuous. Their solution may describe particles 

motions in lattice, current in electrical networks, pulses in 

biological chains, etc.  [20] . The Mathematica  ®   package by 

 [20]  computes exact traveling wave solutions of nonlinear 

polynomial DDEs. Let the system of DDEs: 

   

( ) ( ) ( ) ( )(
( ) ( ))

1 k 1 k

1 k

n n n n

(r) (r)

n n

,…, , ,…, ,…,

,…, 0,

′ ′
+Δ +Δ +Δ +Δ

+Δ +Δ

Φ u x u x u x u x

u x u x =
 

(23) 

 where  u  is an  M -dimensional dependent variable,  n  an 

 Q -dimensional vector of discrete independent variables,  x  

an  N -dimensional vector of continuous variables, with the 

shift elements  Δ  
 i 
  ∈     Q  ,  i   =  1, k . We look for solutions in the 

traveling frame of reference: 

   
ξ δ

= =
= + +∑ ∑1 1

.
Q N

i i j ji j
d n c xn

  

2.3.2    Tanh-method for DDEs 

 The five steps of the algorithm of the tanh-method for 

DDEs are the same steps as for PDEs with necessary 

adaptations. 

 In step 1, a DDE is transformed into a nonlinear DDE 

in  T  
 n 
   =  tanh (  ξ   

 n 
 ), by repeatedly using the chain rule: 

    
( )21-i

j j

d dT d d
c T

dx x d dT dT

ξ
ξ

∂= =
∂

n n
n

n n n  
(24) 

 We have  16   : 

    

( )
( )

tanh

1 tanhs

s

s

T
T

T

φ

φ+Δ

+
=

+
n

n
n  

(25) 

 where   φ   
s
   =   Δ  

 s 1
   d   

1
  +  …  +  Δ  

 sQ 
  d  

 Q 
 . The system (23) is transformed 

into: 

   

( ) ( ) ( ) ( )(
( ) ( ))

1 1

1

n n n n

n n

,…, ,…, ,…,

,…, 0.

k k

k

T T T T

T T

′ ′
+Δ +Δ +Δ +Δ

+Δ +Δ

Ψ n n n n

(r) (r)
n n

U U ,U U

U U =
 

(26) 

 In step 2, we determine the degree of the polynomial 

solution of the form   ( ), 0
.

iM j

i ijj
U T a T

=
=∑n n n  The leading expo-

nents  M  
 i 
  are determined by substituting   ( ), ,i

s s

M

iU T T+Δ +Δ=n n n  

defined by Eq. (25). In step 3, we form the algebraic system 

for the coefficients  a  
 ij 
 , by substituting: 

    
( ), 0

i

s s

M j

i ijj
U T a T+Δ +Δ=

=∑n n n   
(27) 

 into Eq. (26) and using Eq. (25). In step 4, the nonlinear 

system of coefficients is solved. In step 5, the solitary 
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 Figure 2    Cnoidal (A) and soliton (B) progressive waves of the KdV equation.    

 16   We are using the addition theorem [4]: 

  
( ) ( ) ( )

( ) ( )
tanh tanh

tanh .
1 tanh tanh

x yx y
x y
±± =

±  

 15   This section is inspired and adapted from [20], with some differ-

ent notations. The Mathematica  ®   package DDE Special Solutions. m 

has been implemented for this study, and is running Mathematica  ®  7. 
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wave solutions are formed and tested numerically and 

symbolically. 

  Example  The following example is the scalar Toda lattice 

taken from  [20] . The polynomial DDE is of the form  17    : 

   u  
 n;xt 

   =  (1- u  
 n;t 

 )( u  
 n -1

 -2 u  
 n 
  +  u  

 n  + 1
 ), (28) 

 where  u  
 n 
   =   u  

 n 
 ( x , t ). The DDE (28) is with one discrete inde-

pendent variable ( n ) and two continuous independent 

variables ( x ) and ( t ). The traveling frame of reference for 

this example is   ξ   
 n 
   =   d  

1
  n  +  c  

1
  x  +  c  

2
  t  +   δ  . 

 Repeatedly applying the chain rule (24), we obtain: 

   

( ) ( )( )
( )( )( )

2 2

1 2

2

2 -1 1

1- 2 - 1-

1 1- -2 0,

n n n n n

n n n n n

c c T T U T U

c T U U U U

′ ″

′
++ + + =

 
(29) 

 where  T  
 n 
   =  tanh (  ξ   

 n 
 ). The vector of shifts is  Δ   =  (-1,0, + 1)  T  . To 

determine the degree of the polynomial solution, we have 

to balance terms with the shifts. If we have to balance terms 

with shift  Δ  
 l 
 , we substitute into Eq. (29):   ,

i

s

M

i n i iU Tχ+Δ =  for 

 s   =   l  or   , si n iU χ+Δ =  for  s  ≠  l . Pulling off the highest degrees, we 

find only one term { M  
1
 } for shifts  Δ  

1
  and  Δ  

3
 , but more con-

tributing terms { M  
1
 ,  M  

1
  + 1,  M  

1
  + 2, 2 M  

1
  + 1} for  Δ  

2
 . Equating the 

two highest terms  M  
1
  + 2  =  2 M  

1
  + 1, we find  M  

1
   =  1. Substituting 

Eq. (27) for  M  
1
  with Eq. (25) into Eq. (29), simplifying and 

setting the coefficients of the power terms in  T  
 n 
  to zero, 

yields the algebraic system: 

   

( ) ( )
( ) ( ) ( )

11 1

2 2

1 2 1 11 2 1

2 2 2

1 2 1 11 2 1 1 2 1

- 0

-tanh - tanh 0

-tanh -2 tanh tanh 0

a c

c c d a c d

c c d a c d c c d

⎤=
⎥

= ⎥
⎥

+ = ⎥⎦

                                                           

                        

 

 Assuming that the coefficient  a  
10

  is arbitrary and 

that  a  
11

 ,  c  
1
 ,  d  

1
  are nonzero coefficients, we obtain 

  

( )= =
2

1

11 1

2

sinh
.

d
a c

c  

 Therefore, the exact close form solution for the scalar 

Toda lattice is: 

   
( ) ( ) ( )2 2

1 1

10 1 2

2 2

sinh sinh
, tanh .n

d d
u x t a d n x c t

c c
δ

⎛ ⎞
= + + + +⎜ ⎟⎝ ⎠

    

3     Analysis and control of diffusion 
processes 

 This section introduces the analysis and control of 

diffusion processes for the following three aspects: the 

stochastic nature of the diffusion processes, the mecha-

nisms by which differential systems are controlled and the 

particular reaction-diffusion equations with extensions 

and time delays. 

 Firstly, the stochastic nature of a diffusion process 

is often verified by considering a collection of particles 

moving along the real line in both directions. This motion 

is confirmed to obey a forward Kolmogorov differential 

equation, with drift and diffusion terms. The It ô  stochastic 

differential equation (SDE) is an equivalent representation 

of the process. Secondly, the control of a diffusion process 

may be realized through different mechanisms, such as: 

an internal feedback for autoregulating the system or an 

external action by which the determination of optimal 

control variables is required in order to put the system at 

the desired position at a finite or infinite horizon. Thirdly, 

the reaction-diffusion (RD) equation is presented with 

extensions and time delays. 

3.1    Diffusion process 

 In the following section, it is established that random 

moves of particles along the real line correspond to a 

forward Kolmogorov equation with drift and diffusion ele-

ments. Moreover, the It ô  SDE affirms an equivalent repre-

sentation of the phenomena. 

3.1.1    Kolmogorov differential equation 

 A collection of particles moves randomly on the real line   , 

with steps  Δ  x  every time unit  τ  (see  [29] , pp. 404 – 406 and 

 [30] , pp. 362 – 365). The time domain [0, ∞) is divided into 

intervals of equal length  Δ  t . The probabilities of moving 

to the right or to the left are, respectively,  p  and  q  so that 

 p  +  q   =  1. The problem is to determine the equation that 

describes the change in the number of particles at posi-

tion  x . Let X(t) be the discrete-time Markov chain (DTMC) 

for the random walk, where ( ) { }   0, , 2 ,X t x x∈ ±Δ ± Δ …  for 

{ }   0, , 2 ,t t t∈ Δ Δ … . Let ( ){ } ( )Prob ,X t x u x t= = . From the anal-

ysis of the DTMCs, we obtain: 

   u ( x ,  t  +  Δ  t )  =   pu     ( x - Δ  x ,  t ) +  qu ( x  +  Δ  x ,  t ).  (30) 

 Using a Taylor series expansion for the RHS of Eq. (30) 

and collecting the terms yields: 

 17   The original Toda lattice equation in [20] is of the form 

  += -1 1- -

; - .n n n ny y y y
n xty e e  The variable  y  

 n 
 ( x ,  t ) states for the displacement 

from the equilibrium of the  n -th unit mass, under an exponential 

decaying interaction force between nearest neighbors. To obtain a 

polynomial DDE, we must have the changing variable   -1 -

; -1.n ny y
n tu e=

 The demonstration of how to obtain Eq. (28) is shown in [20].
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( ) ( ) ( ) ( ) ( ) ( )( )2 31

, , - - .
2

x xxu x t t u x t q p u x u x x+Δ = + Δ + Δ + ΔO
 
(31) 

 Subtracting  u ( x , t ) and dividing both sides of Eq. (31), 

we have: 

   

( ) ( ) ( ) ( ) ( )2 3
, - , 1

- .
2

x xx

u x t t u x t x x x
q p u u

t t t t

⎛ ⎞+Δ Δ Δ Δ= + + ⎜ ⎟Δ Δ Δ Δ⎝ ⎠
O

 

 Assuming   ( )
, 0

lim - ,
x t

x
p q c

tΔ Δ →

Δ =
Δ

 
  

( )2

, 0
lim ,
x t

x

tΔ Δ →

Δ =
Δ

D  and 

  

( )3

, 0
lim 0,
x t

x

tΔ Δ →

Δ =
Δ

 we may write the diffusion equation with
 

drift 

    
- , ,

2
t x xxu cu u x= + ∈D

 R
 

(32) 

 where      denotes the diffusion term and the drift constant 

 c . This equation is the forward Kolmogorov differential 

equation. Supposing an unbiased and symmetric move-

ment, for which we have the equiprobability  p   =   q   =  0.5. The 

limiting stochastic process is 
  

,
2

t xxu u x= ∈D
 R  and repre-

sents the Brownian motion (no drift).  

3.1.2    Cauchy problem for a Brownian motion 

 Let the Cauchy problem (see  [31] , pp. 312 – 313): 

   u  
 t 
   =        u  

 xx 
 ,  t  ∈ (0, ∞ ) (33) 

 for which the initial condition is  u ( x ,0)  =   u  
0
 ( x ),  x  ∈   . A 

Fourier transform of  u ( x , t ) in  x  is defined by: 

   

[ ] ( ) ( )
-

1
, , .

2

isxu s t u x t e dx
π

∞

∞
≡ = ∫F U  

 

 Applying Fourier transforms to (33) yields  18       
 t 
  ( s , t )  =  -  

 s  2    ( s , t ),  s  ∈    for which the transformed Dirichlet 

initial condition is    
0
 ( s ). The inverse Fourier transform  

  
-1
 [   ( s , t )] and the convolution theorem of Fourier  19     yield 

the solution: 

   

( ) ( )
( )2-

-
4

0
-

1
, .

2

x v

tu x t u v e dv
tπ

∞

∞
= ∫ D

D  

 Lets suppose that the initial density is concentrated at  x  
0
 , 

that is the Dirac delta function  u ( x , 0 )  =    u 
0
 δ  ( x - x  

0
 ), the solu-

tion of the initial value problem (IVP) is a normal density 

function with mean  x  
0
  and variance    t .  

3.1.3    It ô  stochastic differential equation 

  Definition  A stochastic process { X ( t ): t  ∈ [0, ∞ )} satisfying 

an It ô  SDE is such that: 

   dX ( t )  =   a ( X ( t ), t ) dt  +  b ( X ( t ), t ) dW ( t ).  (34) 

 It can be shown (see  [30] , pp. 380 – 387) that an It ô  

solution of Eq. (34) satisfying conditions is a solution of 

the Kolmogorov equation with drift coefficient  a ( x , t ) and 

diffusion coefficient  b  2 ( x , t ), that is: 

   
( )( ) ( )( )= + 21

- , , .
2

t x xx
p a x t p b x t p

 

 The SDE corresponding to forward Kolmogorov diffu-

sion equation, Eq. (32), is: 

   
( ) ( ) ( ) 0, 0 ,dX t cdt dW t X x= + =D  

 

 where p(x,t) is the probability density function of X(t). so 

that: 

  X ( t ) ∼    ( x  
0
  +  ct ,    t ).   

3.2    Controlled diffusion process  20    

 Many dynamical systems show periodic increases that 

require some feedback control mechanisms. The stochas-

tic control for a system, in a noisy environment, is another 

approach, by which we seek to minimize a cost quadratic 

function subject to the dynamics of the system. 

3.2.1    Feedback control 

 In numerous cell cultures, some enzymes show periodic 

increases in their activity during division. Murray  [36] , pp. 

143 – 148, recalls the regulatory mechanisms. In cellular 

physiology, models may be capable of self-regulation and 

control (e.g., metabolites repressing the enzymes which 

are necessary for their own synthesis). 

 18   The Fourier transform is obtained by using the properties 

 [ ] ( )s∂ ∂ =F U/ - ,u x i s t   and  ( )∂ ∂ =⎡ ⎤⎣ ⎦F U2 2 2/ - ,u x s s t  , assuming that 

 ( )→, 0u x t   and ( )∂ ∂ →, / 0u x t x  as  x  →   ±  ∞. 

 19   The convolution theorem of Fourier states that 

  
( ) ( )[ ] ( ) ( ) 

π

∞−

∞
= ∫F A B1

-

1
- .

2
s s A v B x v dv

 

 20   See [32] for a precise overview on controlled diffusion processes, 

regarding the existence of optimal controls and their characterization. 

Numerous studies on this domain deal with control problems of linear 

systems with a quadratic performance criterion [33, 34]. The control 

theory for PDEs is studied in [35]. 
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 One simple schematic feedback control system is illus-

trated in  [36] , p. 144, for the production of an enzyme. This 

representation is a generalization of the early Goodwin 

oscillator with damping in 1965  [37] . The effect is gener-

ally nonlinear and may activate or inhibit the reactions 

(see  [36] , pp. 122 – 130 on autocatalysis  21    , activation and 

inhibition).  

3.2.2    Basic enzyme reaction    22     

 Enzyme reactions involving proteins (or enzymes) take 

place in living organisms (Figure  3  ). Enzymes react selec-

tively on a compound (substrates) (e.g., hemoglobin in 

red blood cells is an enzyme and oxygen a substrate). The 

enzymes then have an important role in regulating biolog-

ical processes as activators or inhibitors in a reaction. The 

basic enzyme reaction model was proposed by Michaelis 

and Menten  [39]  in 1913, who studied the kinetics of an 

enzymatic reaction mechanism. The model involves a sub-

strate  S  reacting with an enzyme  E  to form the complex  SE , 

which is converted into a product  P  and the enzyme. The 

enzyme reaction is represented in Figure 3. 

 In this model, a reversible reaction is followed by a 

one-way reaction, where constant parameters  k  
1
 ,  k  

-1
 ,  k  

2
  are 

associated with the rates of reaction. The mechanism is 

such that the substrate  S  is converted into a product  P , 

via the catalyst  E : one molecule of  S  combines with one 

molecule of  E  to get  SE , which may produce one molecule 

of  P  and one molecule of  E . According to the law of mass 

action, the rate of reaction is proportional to the product 

of the concentrations of the reactions. Let the concentra-

tions [ S ] ≡  s , [ E ] ≡  e , [ SE ] ≡  c  and [ P ] ≡  p.  We obtain the follow-

ing nonlinear system of reaction equations [38]: 

   

( )
( )

1 -1

1 -1 2

1 -1 2

2

-

-

-

t

t

t

t

s k es k c

e k es k k c

c k es k k c

p k c

′

′

′

′

⎤= +
⎥

= + + ⎥
⎥

= + ⎥
⎥

= ⎥⎦

         

  

                 
 

 Thus, according to the first equation, the rate of change of 

the concentration [ S ] consists of a loss rate proportional 

to [ S ][ E ] and of a gain rate proportional to concentration 

[ SE ]. Given the initial conditions  s (0)  =   s  
0
 ,  e (0)  =   e  

0
  and 

 c (0)  =   p (0)  =  0, the solutions give the concentrations and 

S + E SE  → P + E
k1 k2

k-1

 Figure 3    Basic enzyme reaction mechanism by Michaelis and 

Menten  [39] .    

the rates of the reactions as functions of time (See [38], 

pp. 175–178).  

3.2.3    Stochastic control 

 The state of a system  X ( t ) is described by an It ô  process 

or linear SDE and we suppose a quadratic cost  J   u   depend-

ing on the states ( x ) and on control variables ( u ). The 

problem is to choose a control trajectory that minimizes 

the quadratic objective  J   u   subject to the dynamics of the 

system. According to a theorem, a set of controls is an 

optimal solution to the control problem, if there exist con-

tinuous differentiable functions satisfying the Hamilton-

Jacobi-Bellman PDE. This technique is presented with one 

example in Appendix C.   

3.3    Reaction-diffusion equations 

 RD equations are parabolic PDEs that notably express 

population growth with simple random diffusion. Such 

equations may have extensions such as with an addi-

tional advection term. This corresponds, for example, 

to chemical species that react locally, can diffuse in the 

solvent and is transported by a bulk movement of the 

solvent. RD equations with time delays (even constant) 

enhance the realism of the specifications for real life 

problems. 

3.3.1    RD equations  [40, 41]  

 PDEs that model population growth with a simple random 

diffusion are RD equations. The vector form of RD systems 

is: 

  u  
 t 
   =   f ( u ) +     Δ  u  ,

 where  u   =   u ( x , t ) are the dependent variables,  f  the reaction 

functions and      the diffusion matrix  [40] . 

 Let  N ( x , t ) be the density of population at time  t  ∈ [0, ∞ ) 

and position  x  ∈  Ω . A scalar RD is  23    (see  [31] , pp. 309 – 316):  21   The autocatalysis is the process whereby a chemical is involved 

in its own production (e.g., a molecule of X combines with one of A 

to form two molecules of X). 

 22   This introduction to basic chemical reactions is inspired from 

[38], pp. 175 – 178.    

 23   An extension to the local population density  N ( x , y , t ) with 

spreading in a 2D uniform space is of the form  N  
 t    =   f ( N ) +    ( N  

 xx 
  +  N  

 yy 
 ). 
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  N  
 t 
   =   f ( N ) +      N  

 xx 
 , 

 where  f ( N ) denotes the reaction rate and    N  
 xx 

  the diffusion 

rate. For one-species population growth  24    , we may have 

an exponential growth with  f ( N )  =   rN  (Malthusian popula-

tions), a logistic growth  25     with  f ( N )  =   rN ( 1 - N/K ), the negative 

logistic for population decay by Skellam  [43]   f ( N )  =  - g  2  N ( 1 -

 N/K ) or the asymmetric Gompertz  f ( N )  =   rN ln( K/N ). 

 Suppose the RD equation with exponential growth 

(See [31], pp. 314–315): 

  N  
 t 
   =   r  

 
N

 
  +    N  

 xx 
 ,   x  ∈ ( L ,0), 

 with the initial condition  N ( x ,0)  =    ϕ  ( x )  x  ∈ [ L ,0] and the BCs 

 N (0, t )  =   N ( L , t )  =  0. The change of variable  P ( x , t )  =   N ( x , t ) e  - rt   

leads to the following IBVP: 

  P  
 t 
   =     P  

 xx 
  

 with the conditions  P ( x ,0)  =    ϕ  ( x ),  x  ∈ [ L ,0] and 

 P (0, t )  =   P ( L , t )  =  0. 

 The solution to  N ( x , t ) is the solution to  P ( x , t ) multi-

plied by  e   rt  . Hence, we have: 

    
( )

2

-

1

, sin

n
r t

L

n

n

n x
N x t B e

L

π
π

⎧ ⎫⎪ ⎪⎛ ⎞∞ ⎜ ⎟⎨ ⎬⎝ ⎠⎪ ⎪⎩ ⎭

=

⎛ ⎞= ⎝ ⎠∑
D

 
 

(35) 

 where 

   
( ) [ ]0

0

2
sin ,  ,0 .

L

n

n x
B N x dx x L

L L

π= ∈∫
 

  

 In this model, the additional growth term increases the 

density locally and speeds up the spatial spread in the 

population.  

3.3.2    Extended RD equations 

 In  [44] , pp. 240 – 243, molecular reaction-diffusion arises 

in chemical domains. Let a single autocatalytic process 

 A  + 2 B  → 3 B  with rate  k  
1
  ab  2 . The RD equation describes how 

the local concentration varies in an infinitesimal volume. 

The reaction kinetics takes the form: 

  a  
 t 
   =       

 A 
   Δ  a - k  

1
  ab  2 . 

 The first term on the RHS denotes the net diffusive inflow 

of species  A  into the volume element. 

 The FitzHugh-Nagumo equation arises in population 

genetics and models the transmission of nerve impulses 

(see  [15] , pp. 179 – 181). It is of the form: 

  u  
 t 
   =   u  

 xx 
 - u (1- u )( a - u ). 

 There are three stationary solutions. The solutions  u   =   a , 

 u   =  1 are stable and  u   =  0 is unstable if  a  ∈ [-1,0). The solu-

tions  u   =  0,  u   =  1 are stable and  u   =   a  is unstable if  a  ∈ (0,1). 

A stationary nonhomogeneous solution in implicit form 

(with arbitrary constants  C
1
  and  C

2
 ) is: 

   

( )
2

4 3 2

1

.
1 1 1

- 1
4 3 2

du
x C

u a u au C

=± +
+ + +

∫
 

 In the reaction-diffusion-advection equation, a chemi-

cal species reacts, can diffuse in the solvent and is trans-

ported by the bulk movement of the solvent. We have: 

  u  
 t 
  +  ∇ ( v  u -     ∇  u )  =   f  ,

 where  u ( x , t ) denotes the concentration of species,  x  ∈     n   

the chemical species,      the diffusion coefficient,  v  ∈     n   

the bulk velocity and  f  the reaction term.  

3.3.3    Delayed RD equation  [45]  

 The RD equation of KPP-Fisher type is a natural extension 

of a logistic growth model. It takes the form: 

    

1- ,t

u
u r u u

K

⎛ ⎞= +Δ⎝ ⎠ 
 

(36) 

 with  u  ≡  u ( x , t ), where  r ,     are positive parameters. A simpler 

normalized form is obtained by rescaling the variables 

 [46]  such as with
   

r
x x=

D
 and   = .t rt  The normalized

 

form of Eq. (36) is: 

   u  
 t 
   =   u (1- u ) +  u  

 xx 
   (37) 

 Incorporating a single discrete time delay  26    into Eq. (37), 

we notably obtain  27     the Hutchinson equation  [51] , that is: 

   u  
 t 
   =   u ( x , t )(1- u ( x , t -  τ  )) +  u  

 xx 
   (38) 

 26   Schaaf [47] first studied, in 1987, traveling wave solutions for a 

scalar RD equation with a discrete delay, by using the phase-plane 

technique. In [48] the existence and stability of delayed PDEs are 

studied. In [49] the existence of traveling wave solutions in delayed 

RD systems is demonstrated. 

 27   Another way to incorporate a time delay is derived from [50], 

that is  u  
 t    =   u ( x , t - τ ) (1- u ( x ,  t )) +  u  

 xx 
 . 

 24   Other specifications of the population growth rate and two-

species population are given in [42], pp. 310 – 311. 

 25   Biological applications for the deterministic and stochastic 

logistic growth are in [30], pp. 421 – 424.  
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 The traveling front of Eq. (37) means a solution of the form 

 u ( x , t )  =   U (  ξ  ),   ξ    =   x  +  ct . Plugging into Eq. (38), we obtain a 

DDE in  U , that is: 

    
( ) ( )( )ξ ξξ ξ τ′ ″= +1- -cU U U c U

 
(39) 

 subject to the asymptotic BCs: 

   

( ) ( )
-

lim 0 and lim 1.U U
ξ ξ

ξ ξ
→ ∞ →+∞

= =  
 

  Theorem  (Zou  [46] ): 

(i)  For every  c    ≥   2, Eq. (39) with BCs has a monotone 

solution, regardless of the value of the delay   τ    >  0. 

(ii)  For every  c  ∈ (0,2), Eq. (39) with BCs also has a 

monotone solution, if 
  
τ ⎛ ⎞≥⎝ ⎠

2
2 2

ln .
c c  

  Proof  (see  [46] ) Different methods may be used to solve 

the resulting DDEs, such as: the method of steps algo-

rithm, the Laplace transform, the differential transform 

method, etc.  [52, 53] . The Mathematica  ®   implementation 

for DDEs only support constant positive or negative delays 

is using the primitive ND Solve. The example shown in 

Figure  4   is: 

   x  ″ ( t ) +  x ( t -1)  =  0,   t  ∈ (0,10].  ■

 with  x ( t )  =   t  2 ,  t  ∈ [-1,0]. 

 Delay partial differential equations (DPDEs) may 

better fit to the real world modeling of the population 

dynamics  28   . The parabolic DPDE is: 

  u  
 t 
   =   a ( t ) u  

 xx 
 - q ( t ) u ( x , t -  τ  ) 

 where   τ   denotes a constant positive delay. 

 The temporal Wazewska-Czyzeska and Lasota equa-

tion describes the survival of red blood cells in animals. 

This equation may be extended by incorporating a spatial 

component as in  [56] , p. VII. The spatiotemporal delay RD 

equation becomes: 

  p  
 t 
   =   dp  

 xx 
 -  δ p ( x , t ) +  qe  - ap ( x , t -  τ  )  

 where  Ω  ⊂    is a bounded domain and ( x , t ) ∈  Ω   ×  (0,  ∞ ). The 

state variable  p ( x , t ) denotes the number of red blood cells 

located at  x  at time  t . The constant time delay   τ    >  0 denotes 

the time needed to produce blood cells. The parameter   δ   is 

the death rate of red blood cells. The parameters  q  and  a  

are related to the generation of red blood.    

 Figure 4    Mathematica  ®   implementation of DDEs with constant 

delays.    

 28   The dynamics and control of time delay differential systems are 

notably studied in [53], with applications to economics. Time lags in 

physical and biological models are notably in [54, 55]. 

4     Applications of evolution equations 
 Migrations in population dynamics and innovation diffu-

sion of new products can be modeled by using the same 

diffusion equation. Advection and diffusion are two dif-

ferent (PDE-based) transport mechanisms  29   . The advec-

tion equation describes the bulk movement of particles in 

a transporting environment (e.g., a swarm of insects in the 

air or pollutants in a river). 

 The 1D advection equation  30     takes the form: 

  a  
 t 
   =  - ca  

 x 
  

 It describes the advection of a scalar field  a ( x , t ) carried 

along by a flow of constant speed  31    . The solution is 

 a ( x , t )  =   f ( x - ct ), where  f  is deduced from the initial condition 

 a ( x ,0)  =   f ( x ). The diffusion equation is a parabolic PDE  32     for 

describing the random motion of particles. A physical 

propagation problem (diffusion) is an IVP. The IVP may be 

a parabolic PDE of the form  33    : 

  u  
 t 
   =    α u  

 xx 
 ,  x  ∈ (0, L ) 

 with the initial condition  u ( x ,0)  =   f ( x ),  f  ∈  C  1 . 

4.1    Population biology dispersal model 

 An RD equation such as Fisher-KPP equation  34     for popu-

lation models acknowledges two main properties: firstly, 

 29   A convection combines these two types of transport. 

 30   This equation is closely related to the hyperbolic wave equation 

 u  
 tt    =   c  2  u  

 xx 
 , where  u  is the displacement and  c  the wave speed. Such a 

PDE is derived from a fundamental conservation law. 

 31   This equation may be rewritten as  a  
 t  / a  

 x 
   =  - c , a  

 x 
  ≠ 0 so that the level 

curves  a ( x , t ) are straight lines of slope  c  and so that the general 

solution takes the form  ϕ ( ct - x ) for an arbitrary  C  1  function  ϕ . 

 32   Recall that a parabolic PDE is one instance, in addition 

to  ‘ hyperbolic ’  and  ‘ elliptic ’  PDEs, of a discriminant-based 

classification for PDEs in two independent variables. For more 

independent variables, the same instances proceed from an 

eigenvalue-based classification. 

 33   Additional BCs such as  u (0, t )  =   u ( L , t )  =  0,  t   >  0 transform the model 

into an IBVP. This physical problem represents the heat conduction 

in a rod for which the ends are at a zero temperature while the ini-

tial temperature at any other point is given by  f ( x ) (see [12], p. 127). 

 34   Fisher ’ s equation was simultaneously introduced by Fisher [57] 

in 1937 and Kolmogorov et al. [58] for phase transition problems in 

combustion, physiology, ecology, etc. 
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the solution is traveling through the spatial domain at a 

finite rate of speed, and secondly conditions on the spatial 

domain are determined for population persistence. These 

two problems are known as  ‘ the traveling wave solutions ’  

and  ‘ the critical patch size ’ . 

4.1.1    Fisher-KPP equation 

 The Fisher-KPP equation is the parabolic PDE  35    : 

   N  
 t 
   =   rN (1- N ) +    N  

 xx 
 ,  x  ∈  Ω  ⊂     (40) 

 where  N ( x , t ) denotes population density at spatial posi-

tion  x  at time  t   >  0 with  N ( x ,0)  =   N ( x ). The reaction term is 

the logistic term  rN (1- N ) and the diffusion rate or random 

motion is    N  
 xx 

 .  

4.1.2    Traveling wave solutions 

  Definition  A traveling wave solution of (40) is a solu-

tion that can be expressed in terms of the scalar   ξ   =  x-vt  

where the constant  v  is the wave speed. We may write 

 N (  ξ  )   =  N ( x-vt ). 

 Let   ξ
′ =- ,N P  we obtain the system of first-order ODEs: 

    
( )

-

- 1-

N P

v r
P P N N

ξ

ξ

′

′

⎧ =
⎪
⎨

= +⎪⎩ D D  
(41) 

 We also impose the following restrictions to the solution 

 N (  ξ  ):  N (  ξ  ) ∈ [0,1],  N (  ξ  ) → 1 as   ξ   → - ∞  and  N (  ξ  ) → 0 as   ξ   →  ∞ . 

The phase plane dynamics  36    is illustrated in Figure  5  , for 

 r   =   v   =        =  1. The equilibrium point  E (0,0) is locally asymp-

totically stable  37    .  

Traveling wave solutions at this point suppose that 

the characteristic equation has a negative discriminant, 

i.e., 2 2
/ 4 / 0v rδ= − <D D . The minimal wave speed for the 

existence of traveling wave solutions is then 2 rD . The 

other equilibrium point at [1,0] is unstable.

4.1.3    Critical patch size 

 What is the minimal size of the spatial domain needed for 

a population survival ?  This problem has been studied in 

 [60]  for an RD equation with exponential growth  38   . The 

IBVP is: 

  N  
 t 
   =   rN  +    N  

 xx 
 ,  x  ∈ (0, L ) 

 with the homogeneous Dirichlet BCs:  N (0, t )  =   N ( L , t )  =  0 and 

 N ( x ,0)  =   N  
0
 ( x ). The conditions on the spatial domain so that 

the solutions (35) approaches zero is 
  

2

r
L

π⎛ ⎞< ⎝ ⎠D
 
(see  [31] , pp. 

319 – 321). The reversed inequality then defines the minimal 

patch size for the population to survive. Solving the equality 

for  L  yields the critical patch size
   

π= .cL
r

D
 Thus, the pop-

ulation size increases if  L   >   L  
 c 
  and decreases to zero if  L   <   L  

 c 
 .   

4.2    Chemical reaction and diffusion [42] 

 A SDE is developed for chemical reactions between mol-

ecules  39    . A fixed volume contains a uniform mixture of 

chemical species, interacting through chemical reactions. 

Two different assumptions are made for interacting reac-

tions and for spontaneous reactions. In the first situation, 

the reaction rates are proportional to the rates of the partic-

ipating molecules. In the latter situation, the reaction rate 

is proportional to the rate of the particular species. 

P
1.0

0.5

-0.5

-0.5 0.5 1.0-1.0

-1.0

E

N

P-nullcline

N-nullcline

 Figure 5    Phase plane dynamics of system (41) of ODEs with 

parameter values  r   =   v   =      =  1.    

 35   The generalization of Fisher ’ s equation in [59] is  u  
 t    =      u  

 xx 
  +  u - u   k  , for 

which an exact analytical solution is proposed for traveling waves. 

 36   For more cases and details, see Allen [31], pp. 321 – 324. 

 37   Figure 5 has been produced by using the Mathematica graphi-

cal interface  ‘ Equation Trekker ’  for specifying initial conditions and 

plotting the resulting numerical solution to the system of ODEs. 

 38   The application of this study is the growth of phytoplankton (the 

bottom of the marine food chain). The conditions for population per-

sistence and extinction have also been demonstrated for a diffusive 

logistic equation and different types of domains. 

 39   This model is taken from Allen [42], pp. 166 – 169. 
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 The problem is: given the initial numbers of mole-

cules of some different chemical species, what will be the 

molecular population levels at a finite horizon ?  

4.2.1    Modeling chemical reactions 

 Suppose there are three chemical species  S  
1
 ,  S  

2
 ,  S  

3
  whose 

constant number of molecules and reaction rates are, 

respectively, X  =  ( X  
1
 ,  X  

2
 ,  X  

3
 )  T   and   μ   

1
 ,   μ   

2
 ,   μ   

3
 . Then, the three 

chemical species interact through molecular collisions or 

spontaneously in four different ways, as shown  40     in Table  1  .  

4.2.2    Mean change and covariance matrix 

 The mean is given by: 

   
[ ] ( )

=
Δ = Δ∑ 4

1
.i ii

E pX X
 

 We find 

   

( ) ( )
( ) ( )

( ) ( )
( )

2 2

1 1 2 2 3 3 2 3 4 1

2 2

1 1 2 2 3 3 2 3 4 1 1 2 3

2 2

2 1

1 1 2 2 3 3 3 4

- -

- - , , .

- - +
2 2

X X X X X X

X X X X X X X X X t

X X
X X X X

μ μ μ μ

μ μ μ μ

μ μ μ μ

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎜ ⎟+ + ≡ Δ
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

f

 

 The variance-covariance matrix is given by 

   
( )( ) ( ) ( )

=
⎡ ⎤Δ Δ = Δ Δ⎣ ⎦ ∑ 4

1
.

T T

i i ii
E pX X X X

 

 We have  41    

   

( )( ) ( )
⎛ ⎞+
⎜ ⎟⎡ ⎤Δ Δ = + + ≡ Δ⎣ ⎦ ⎜ ⎟
⎜ ⎟+ +⎝ ⎠

1 2 3

4 -4 - -2

-4 4 - 2 , , ,

- -2 - 2

T

a b a b a b

E a b a b a b g X X X t

a b a b a b

X X

 

 where  a  ≡   μ   
1
  X  

1
  X  

2
  +   μ   

2
  X  

3
  and  b  ≡   μ   

3
 ( X  

2
 ) 2  X  

3
 /2 +   μ   

4
 ( X  

1
 ) 2 /2.  

4.2.3    Stochastic differential equation 

 The It ô  SDE is of the form: 

    
( ) ( ) ( ) ( )1 2 3 1 2 3, , , , ,d t X X X dt g X X X d t= +X f W

 (42) 

 40   In the third chemical reaction, the rate depends on a collision 

involving two molecules of  X  
2
  and two molecules of  X  

3
 . Because 

there are   ( )
2

2

2 2-1 /2XC X X=  ways to select the molecule  X  
2
 , the rate of 

reaction depends approximately on ( X  
2
 ) 2 /2. 

 41   In practice, the entries  v  
 ij   of the variance-covariance matrix have 

been determined by using   ( )4

1
, , , 1,3kl i ii

v p k l k lδ
=

= =∑   where   δ   
 i    =  ( Δ  X  ) 

 i   

⊗ ( Δ  X ) 
 i  . 

 with X(0)  =  X 
0
  and where W( t ) denotes a vector of three 

independent Wiener processes.  

4.2.4    Molecular population migration 

 The diffusion of molecular population levels for one 

sample path is shown in Figure  6   by solving  42    the SDE, 

Eq. (42), for particular values of the constant reaction rates 

as   μ   
1
   =  0.02,   μ   

2
   =  0.4,   μ   

3
   =  0.001,   μ   

4
   =  0.03 and initial number 

of molecules assumed to be  X  
1
 (0)  =   X  

2
 (0)  =   X  

3
 (0)  =  100.   

4.3    Innovation diffusion model 

 Innovation diffusion models describe the process by 

which innovation products (or new ideas or practices) are 

communicated over time through certain channels and 

expand through a population of adopters  43    . The typical 

time path of the cumulative adopter distribution (e.g., for 

 42   The computations are using the Fortran codes proposed by 

Allen [42], pp. 208 – 213. For this study, the Fortran code has been   

translated into C +  +  codes by using f2c (version 19980831 for 

lcc-win32). The output for a new program is the input data file for 

one Mathematica  ®  7 notebook. A notebook produces the plots and 

statistics for the problem.

 43   Further applications of the PDEs to economics and finance are 

in [61]. 

Chemical reaction Possible change Probability

 S  
1
  +  S  

2
  →  S  

3
 ( Δ X) 

1
   =  (-1,-1, + 1)  T   p  

1
   =    μ   

1
  X  

1
  X  

2
  Δ  t 

 S  
3
  →  S  

1
  +  S  

2
 ( Δ X) 

2
   =  ( + 1, + 1,-1)  T   p  

2
   =    μ   

2
  X  

3
  Δ  t 

 2S  
2
  +  S  

3
  → 2 S  

1
 ( Δ X) 

3
   =  ( + 2,-2,-1)  T  

  

( )
μ= Δ

2

2

3 3 3
2

Xp X t

2 S  
1
  → 2 S  

2
  +  S  

3
 ( Δ X) 

4
   =  (-2, + 2, + 1)  T  

  

( )2

1

4 4
2

Xp tμ= Δ

 Table 1      Possible molecular population changes in  Δ  t  and 

probabilities.  

Molecule number

100

0 1

S2

S1

S3

 Figure 6    Molecular population numbers for one simple path.    
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a mobile phone) is a sigmoidal S-shaped time curve: few 

adopters at the beginning (mainly professionals), then 

more and more adopters and finally diffusion to public at 

large. The market is saturated at the upper limit. Modeling 

the innovations has an extensive literature in marketing. 

Analogies are with models of epidemics. 

4.3.1    Dynamics of new products  [62]  

 A general model of new product acceptance is composed 

of  M ( t ) participants to the market, of  N ( t ) adopters of the 

new product and  m  the maximum of potential customers 

 [63] . There are three distinct segments of the market: the 

current market  N ( t ), the potential market  m - N ( t ) and the 

untapped market  M ( t )- m . The typical expansion model of 

new adopters is: 

    
( ) ( )( )- ,

dN
g t m N t

dt
=

 
(43) 

 where  N ( t ) is the cumulative numbers of prior adopters, 

 m - N ( t ) the potential adopters and  g ( t ) the expansion 

coefficient or probability of adoption  44   . The marketing 

problem is: how many of the potential adopters will buy 

the new product at time  t  ?   

4.3.2    Bass logistic model 

 The Bass dynamics model  [64]  is governed by the ratio of 

two control parameters  p  and  q , respectively, the innova-

tion and the imitation rates. The evolution of the adop-

ters may be the nonlinear ODE (43). Suppose that  g ( t ) 

takes the linear specification  45     
  

( ) ( )N t
g t p q

m
= +  and define 

  
( ) ( )= ,

N t
X t

m
 the Bass model is the logistic equation: 

    
( )( ) ( )( )1- .

dX
p qX t X t

dt
= +

 
(44) 

 Integrating (44) by parts, the time path is: 

   

( )
( )

( ) ( )

-

-

1-

1 /

p q t

p q t

e
X t

q p e

+

+=
+

 

 The maximum expansion rate is obtained for 

 d  2  X / dt  2   =  0 (at the inflexion point of the time path), where 

  
= 1ˆ - .

2 2

p
X

q
 To find the time   ̂ ,t  when   ( )ˆX t  is a maximum

 

penetration rate, we solve: 

   

( ) ˆX t X=  in time  t  and obtain 

  

( )=
+

ln /
ˆ - .

p q
t

p q
  

4.3.3    Stochastic innovation diffusion 

 The innovation diffusion process may be disturbed by 

random impacts from the environment (e.g., socioeco-

nomic factors) as well from the system itself. Uncertain-

ties are inherent in the marketing approach due to chang-

ing consumer tastes, technology conditions, etc. These 

uncertainties can be modeled by using normally distrib-

uted parameters  [66]  or by formulating an adapted It ô  

SDE  46   . The stochastic Bass ’  innovation model in  [68]  is 

reformulated as  47    : 

   
( ) ( )- -

q p N
dN p m N m N N dt c dW

m q m

⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎝ ⎠ ⎝ ⎠  

 where  W  is a Wiener process and  c  the noise parameter. 

The mean value (first moment) of the solution is  48    : 

   

[ ]
( )

( )( )
 

0

-
1

-1

p q t

p q t

m e mp
E N

q qe
p N p q
q m

+

+
=

+
++

  

4.3.4    Spatial innovation diffusion 

 How innovations are diffusing in different geographical 

spaces ?  The space and time dimensions in the diffusion 

process are integrated in  [70] . The Bass model becomes the 

PDE: 

  N  
 t 
   =  ( p ( x ) +  q ( x ) N )( m ( x )- N ), 

 where  N ( x , t ) denotes the cumulative number of adopters 

in domain  x  at time  t . The innovation dynamics shows a 

characteristic wave-like set of S-shaped curves. 

 Recently, spatially-dependent imitation processes 

are introduced into the classical imitation-innovation 

 44   In that case, the rate of diffusion at time  t  equals the expected 

number of adopters. 

 45   The dynamics of the external (innovation) and internal 

(imitation) effects is analyzed in [65], pp. 12 – 26. The generalized 

von Bertalanffy model is also shown to have flexible properties 

with regards to the symmetry and point of inflexion of the integral 

diffusion curves. 

 46   Population biology models with time delay in a noisy environ-

ment are studied in [67]. The population-dependent diffusion model 

in [3] incorporates a stochastic component. 

 47   Different notations are used in [68]. 

 48   The model is solved by reducing the nonlinear SDE to a linear 

form [68] .The same method is used in [69] to solve a stochastic 

logistic innovation diffusion model for Greece and USA. 
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Bass dynamics in  [71] . The resulting multi-agent imita-

tion model generates spatio-temporal patterns. A micro-

scopic approach is adopted by Hashemi et al [71]. In this 

innovation-imitation model, the imitation process depends 

on the spatial proximity of a multitude of interacting agents. 

The agents observe their neighborhood and reevaluate 

their decisions. The mean-field technique of the statistical 

Physics is used to replace the large number of micro-inter-

actions by one efficient interaction. A system of Fokker-

Planck PDEs is then obtained for probability densities. 

The nonlinear field dynamics is exactly solvable. 

However, the solution process requires successive trans-

formations that lead to a solvable evolution equation. 

These transformations are, notably: a Taylor expansion of 

the imitation function (for infinitesimal interacting neigh-

borhoods), a Galileo transformation of coordinates (to get 

dimensionless coordinates), and a Hopf-Cole logarithmic 

transformation of the Boltzmann PDEs (to linearize). The 

resulting system is reduced to a Telegraphist equation for 

which a general solution can be found.      

5    Conclusion 
 This presentation introduces the dynamics of popula-

tion dispersal in biology, in chemistry and spatial dif-

fusion of new products in marketing. The importance of 

RD equations has been shown with a variety of popu-

lation growth specifications. Basic 1D diffusion models 

have been considered. The dynamics of such models 

have mainly been on traveling wave solutions and on 

critical patch size. Appendices A to C allow to develop 

some technical practices of the modeling process: the 

Mathematica  ®   implementation for PDEs and DDEs 

special solutions, the tanh-function method applied to 

the Boussinesq system and the stochastic control tech-

nique with an example, for which the complete solution 

is given. 

 Further developments and applications may extend 

this introductive presentation. The models can be gener-

alized to multi-agent models and to multiple species. The 

space dimension may be extended. Other specifications 

of the population growth may be chosen as an alternative 

(e.g., a predator-prey specification for multiple species, 

such as with the diffusional Lotka-Volterra system  [40] , 

pp. 21 – 23). Other domains include population biology, 

ecology and economics. Constant and variable time delays 

may be introduced more systematically.   
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Materials (LMM) of the Polytechnic School at the Aristotle 
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gestions while preparing this paper.  

       Appendix A. Mathematica 
implementation for PDE Special 
Solutions  

 Using the Wolfram Mathematica  ®   package  [72]  for solving 

a PDE (see  [15] , pp. 1687 – 1734 and  [5] ), one has three pos-

sibilities: the Mathematica  ®   function DSolve, the PDE 

Special Solutions.m Mathematica  ®   and DDE Special Solu-

tions package. A short description with demonstrations is 

proposed for each package. 

  A.1  DSolve[ … ] Mathematica    ®     function  

 This Mathematica  ®   primitive DSolve[ … ] for finding 

exact solutions in closed form of ODEs may also solve 

PDEs. DSolve can find general solutions for linear and 

weakly nonlinear PDEs. The primitive NDSolve[ … ] solves 

PDEs numerically. The syntax of such primitives for one 

unknown function with two arguments is: 

 DSolve [{ PDE ,  boundary conditions },  u [ x , t ], { x , t },  option ]. 

 DSolve generates arbitrary functions, whereas NDSolve 

yields an interpolating function. The following primitives 

are for the hyperbolic wave equation: 

  u  
 tt 
 - c  2  u  

 xx 
   =  0. 

 In Figure  7  ,  C  
1
  and  C  

2
  are arbitrary functions. The char-

acteristics for which the solution is constant are the two 

families of straight lines 
  

,
t

x k
c

= ±  where  k  is an arbitrary 

constant. The following primitives consider the BIVP with 

Cauchy boundary conditions:   ( ) 2-,0 ,xu x e=   u  
 t 
 ( x ,0)  =  0 and 

 u ( x  
0
  ,t )  =   u ( x  

1
 , t ). 

 In Figure  8  , the boundary Cauchy problem is solved 

numerically. The 3D plot and the contours for this solution 

are represented in Figure 1. 
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  A.2 ATFM.m Mathematica    ®     package  

  A.2.1 Algorithm  

 ATFM denotes automated tanh-function method. This 

Mathematica  ®   package in  [73]  can handle numerous 

nonlinear evolution equations. It automates the tanh-

polynomial method, for which traveling wave solu-

tions are found by taking  u ( x , t )  =   U (  ξ  ), where   ξ    =   x - ct -  δ  . 

The substitution into the initial PDE yields an ODE for 

  ( )
0

,
M i

ii
U a Tξ

=
=∑  where  T   =  tanh( k ξ  ). The positive integer  M  

to be determined by balancing the highest order of the 

linear and nonlinear term(s). The  a  
 i 
  ( i   =  0, … , M ) are real 

constant with  a  
 M 

  ≠ 0. 

  A.2.2 Procedure  

 The Mathematica  ®   function is: 

 ATFM[ eqn _,  U _,  T _,  M _,  param __], 

 in which  eqn  is the ODE in  U  to be solved,  M  the degree 

of the tanh-polynomial, and  param  the sequence of para-

meters, if any. 

  Examples.  

 Two examples are the KdV equation and the Kawahara 

equation  [25] . The ODE in  T  for the KdV equation is: 

   
kdv - 0.T T TcU UU U′ ′ ′″= + + =

 

 with  T   =  tanh( k ( x - ct -  δ  )) where  c  is the phase speed,  k  the 

wave number,   δ   the phase shift. The ODE in  T  for the 

Kawahara equation  49    is: 

   
(5)kawahara - - 0.T T T TcU UU U U′ ′ ′″= + + =

 

 The solution given by ATFM for the KdV equation is: 

  u ( x , t )  =   c  + 4 k  2  (2-3tanh 2  ( k ( x - ct - δ ))) 

 The solution by AFTM for the Kawahara equation is: 

   

( ) 4105 1 36
, sech - -

169 2 3 169
u x t x t δ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 The ATFM listing for these two examples is in Figure  9  . 

  A.3  PDE Special Solutions.m 
Mathematica    ®     package for PDEs   [74]  

 The Mathematica  ®   package  50     PDE Special Solutions.m in 

 [75 ,  76]  computes traveling wave solutions as polynomials 

in either  T   =  tanh   ξ  ,  S   =  sech   ξ  , CN  =  cn(  ξ  : m ) or SN  =  sn(  ξ  : m ) 

with 
  0

,
N

j j

j

c xξ δ
=

= +∑  where the coefficients of the spatial
 

 Figure 8    Mathematica  ®   primitives for solving the wave equation BIVP.    

 Figure 7    Mathematica  ®   primitives for solving the wave equation.    

 49   This equation takes place in the theory of shallow water waves with 

surface tension, in the theory of magneto-acoustic waves in plasmas.  

50   The package has been implemented on PC in a Mathematica  ®  7 

environment, for this study. 
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coordinates are the components of the wave vector, with a 

constant phase   δ  . This package leads to closed-form solu-

tions of nonlinear PDEs. 

 The main function is: 

 PDE Special Solutions [{equations},{functions},{variables},

{parameters}, options] 

 The options are (the default options are underlined): 

 Form →  Tanh  | Sech | SecTanh | JacobiCN | JacobiSN (i.e., how 

the solutions are expressed), Input Form →  True  | False (i.e., 

the standard Mathematica output form), Degree Of the 

Polynomial → {m[1] → Integer, m[2] → Integer … }, Symbolic 

Test →  True  | False (i.e., the solutions are tested truly sym-

bolically), Numeric Test →  True  | False (i.e., the solutions are 

accepted if they pass one or more tests; the 13 tests consist 

of random numbers ranging from 0 to 1 for all parameters). 

 One example is the Boussinesq equation with real 

para meter   α   

  u  
 tt 
 - u  

 xx 
  + 3 uu  

 xx 
  + 3( u  

 x 
 ) 2  +   α u  

 xxxx 
   =  0. 

 This equation has been proposed to describe water 

waves in shallow water. The first steps of the tanh-method 

by using this Mathematica package for this example are 

shown in Figure  10  .

The first steps of the algorithm are in Figure 10, that is: 

  Step 1   –  transform the nonlinear PDE into a nonlinear ODE 

in  T   =  tanh;  Step 2   –  determine the maximum degree of the 

polynomial solution;  Step 3   –  determine the nonlinear 

algebraic system for the coefficients. The next steps to 

get the solution in tanh are in Figure  11  ;  Step 4   –  solution 

of the algebraic system;  Step 5   –  expressions of the wave 

solution for given expressions of   ξ  . 

 We obtain the solution: 

   

( )
2

2 2 22
1 12

1

1
, 1 8 - -4 tanh ,

3

c
u x t c c

c
α α ξ

⎛ ⎞
= +⎜ ⎟⎝ ⎠

 

 where   ξ    =   c  
1
  x  +  c  

2
  t . For one another wave vector ( c  

1
   =   k ,  c  

2
   =  - kv ), 

we obtain the solution:   ( ) ( )2 2 2 21
, 1- 8 -4 tanh

3
u x t v k kα α ξ= +  

 where   ξ    =   k ( x - vt ). 

 The 3D plot and contours are shown in Figure  12  , for 

all the parameters taking the unit value. 

  A.4  DDE special solutions.m Mathematica    ®    
 package for DDEs  

 The Mathematica package  ®    51    DDE Special Solutions.m in 

 [20]  computes traveling wave solutions as polynomials in 

 T  
 n 
   =  tanh   ξ   

 n 
 , for one discrete independent variable ( n ) and 

 N  continuous independent variables. The traveling frame 

of reference is   1

0

,
N

n j j

j

d n c xξ δ
=

= + +∑  where the coefficients 

 Figure 9    KdV and Kawahara PDE solutions by using the ATFM Mathematica  ®   package.    

 51   The package has been implemented on a PC in a Mathematica  ®  7 

environment for this study. 

Authenticated | Andre.Keller@univ-lille1.fr author's copy
Download Date | 11/6/13 12:30 PM



140      A.A. Keller: Reaction-diffusion systems in natural sciences and new technology transfer

 Figure 10    Boussinesq wave equation by using Mathematica  ®  : first steps of the tanh-method.    

 Figure 11    Boussinesq wave equation by using Mathematica  ®  : wave solution in tanh.    
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 Figure 12    Boussinesq wave equation by using Mathematica  ®  : 3D plot (A) and contours (B) for k=ν=α=1.    
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of the spatial coordinates are the components of the wave 

vector, with a constant phase   δ  . This package leads to 

closed-form solutions of nonlinear DDEs. 

 The main function is: 

 DDE Special Solutions [{equations},{functions},{variables},

{parameters}, options] 

 The options are (the default options are underlined): 

 Verbose → True |  False , Input Form →  True  | False (i.e., the 

standard Mathematica output form), Degree Of the 

Polynomial → {m[1] → Integer, m[2]  → Integer … }, Min Degree 

Of The Polynomial → 1, Max Degree Of The Polynomial → 3, 

Solve Algebraic System →  True  | False (i.e., the algebraic 

system is generated but not automatically solved), Symbolic 

Test →    True  | False (i.e., the solutions are tested truly sym-

bolically), Numeric Test →  True  | False (i.e., the solutions are 

accepted if they pass one or more tests; the 13 tests consist 

of random numbers ranging from 0 to 1 for all parameters). 

 Another example, taken from  [20] , is the scalar Toda 

equation with one discrete variable ( n ) and one continu-

ous variable  52     ( t ), that is: 

   u  
 n;tt 

   =  (1 +  u  
 n;t 

 ) ( u  
 n -1

 -2 u  
 n 
  +  u  

 n  + 1
 ). (45) 

 where  u  
 n 
  ≡  u  

 n 
 ( t ). The first steps of the tanh-method by using 

this Mathematica package for this example are shown in 

Figure  13  . Applying the chain rule
   

n n

j j n n

dT d

x x d dT

ξ
ξ

∂ ∂=
∂ ∂

 to 

Eq. (45), yields  53    : 

   

( ) ( ) ( ) ( )
( )

2 2 2 23 2

2 2 2 2

24 2

2 -1 2 -1 2 -1

2

2 2 1

2

2 1 2 1

-2 2 -2

- -

2 2 -2 -

- .

n n n n n n n

n n n n n n n n

n n n n n n n

n n n n n

T c U T c U c U T c U

T c U U c U U T c U U

U c U U T c U U U

c U U T c U U

+

+ +

+ +

+ +

+ +

+

' ' '' ''

'' ' '

' '

' '

 (46) 

 The maximal degree of the polynomial solution in  T  
 n 
  

is 1. Then, we have the polynomial solution  U  
 n 
   =   a  

0
  +  a  

1
  T  

 n 
 . 

The nonlinear algebraic system of the coefficients is: 

   

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

                                                                        

                            

1 2

2 2 2

2 1 1 2 1

2 22 2 2

2 1 1 2 1 2 1

- 0

- tanh tanh 0

- tanh 2 tanh - tanh 0

a c

c c a c c

c c a c c c c

⎤=
⎥
⎥+ + =
⎥
⎥+ + = ⎦  

 
We find 

  

( )
( )
1

1 2 2

1

tanh
.

1-tanh

c
a c

c
= =∓

 

 53   The first five terms of Eq. (46) correspond to the transformation 

of  ≡∂ ∂2 2

; / .n tt nu u t   
  
  

 Figure 13    Single Toda lattice DDE equation by using Mathematica  ®  : first steps of the tanh-method.    

 52   The previous scalar Toda equation in subsection 1.3 was with 

two continuous variables ( x , t ). 
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 Finally, the numerically and symbolically tested 

solutions of the scalar Toda lattice DDE equation are 

(Figure  14  ): 

   ( ) ( )( )0 1 1 1( ) sinh tanh sinh .nu t a c c n c t= ∓ ∓
 

   Appendix B. Tanh-method 
application to the Boussinesq 
system  
 The different steps of the tanh-method ’ s algorithm are 

illustrated by the nonlinear Boussinesq system  54   : 

   
( )

     0

0

t x x

xt xxx

u v uu

v vu u

+ + = ⎤
⎥+ + = ⎦  

 The Boussinesq system is solved manually and auto-

matically by using the Mathematica  ®   package PDE Special 

Solutions.m. 

  B.1 Solutions by hand  

 The different steps of the tanh-method algorithm are: 

  Step 1   –  transform the nonlinear PDE into a nonlinear 

ODE in  T   =  tanh;  Step 2   –  determine the maximum degree 

of the polynomial solution;  Step 3   –  determine the nonlin-

ear algebraic system for the coefficients;  Step 4   –  solution 

of the algebraic system;  Step 5   –  expressions of the wave 

solution for given expressions of   ξ  . 

 For this example, we have: 

 –   Step 1 :  Use the   traveling wave transformations . Using 

the traveling wave transformations  u ( x , t )  =   U (  ξ  ) and 

 v ( x , t )  =   V (  ξ  ),   ξ    =   k ( x - vt ), we obtain the reduced system 

of ODEs: 

   
3 (3)

- 0

- 0

kvU kV kUU

kvV kVU kUV k U

ξ ξ ξ

ξ ξ ξ ξ

′ ′ ′

′ ′ ′

⎤+ + =
⎥

+ + + = ⎥⎦

              

 

 –   Step 2 :  Postulate the tanh-series and use 

transformations . We expect that   ( )
0

M
i

i

i

U a Y
=

=∑ξ

and   ( )
0

,
N

j

j

j

V b Yξ
=

=∑  where  Y   =  tanh   ξ  . The use of the 

transformations in Eq. (9) to Eq. (11) reduces to: 

   

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )

2 2 2

2 2 2

33 2 2 3 2 3 2 (3)

- 1- 1- 1- 0

- 1- 1- 1-

2 1- 3 -1 -6 1- 1- 0

Y Y Y

Y Y Y

Y Y Y

kv Y U k Y V k Y UU

kv Y V k Y VU k Y UV

k Y Y U k Y Y U k Y U

′ ′ ′

′ ′ ′

′ ″

⎤+ + =
⎥
⎥+ +
⎥
⎥+ + = ⎦

  

 
(47) 

 –   Step 3 :  Determine the maximum exponents M   and N . 

In the first Eq. (47), the linear term of highest order 

  YV '  is balanced with the highest order nonlinear term 

  YUU '  to get 2 + ( N -1)  =  2 +  M  + ( M -1) then  N   =  2 M . In the 

 Figure 14    Single Toda lattice DDE equation by using Mathematica  ®  : wave solution in tanh.    

 54   In addition to this example, a system of coupled modified 

Korteweg-de Vries (KdV) nonlinear equations is taken [16]. 
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second Eq. (47),   ( 3)

YU  is balanced with   YUV '  to have 

6 + ( M -3)  =  2 +  M  + ( M -1), then we deduce  N   =  2,  M   =  1. The 

two finite expansions are  u ( x , t )  =   U ( Y )  =   a  
0
  +  a  

1
  Y ,  a  

1
  ≠ 0 

and  v ( x , t )  =   V ( Y )  =   b  
0
  +  b  

1
  Y  +  b  

2
  Y  2  , b  

2
  ≠ 0. 

 –   Step 4 :  Determine and solve the algebraic nonlinear 

system of parameters . This system is obtained by 

substituting   (3), , ,Y Y YU U U U′ ″  and   , YV V ′  in Eq. (47), by 

expanding and collecting for  Y  and then equating all 

the coefficients of  Y   i   to 0. The algebraic system is: 

   

1 1 0 1

2

2 1

2

1 1 0 1 1 0

2 0 2 1 1

2

1 1 0 1 1 0 1 2

 - 0

2 0

-2 - 0

-2 2 2 0

8 - - 3 0

va b a a

b a

k a vb a b a b

vb a b a b

k a vb a b a b a b

⎤+ + =
⎥

+ = ⎥
⎥

+ + = ⎥
⎥+ + = ⎥
⎥+ + = ⎦

                     

                              

 

 Solving the system, we retain the solution  

a  
0
   =   v ,  a  

1
   =  2 k ,  b  

0
   =  2 k  2 ,  b  

1
   =  0,  b  

2
   =  -2 k  2 . 

 –   Step 5 :  Solution of the nonlinear Boussinesq equation 

in closed form . The solution in terms of tanh is 

 u ( x , t )  =   v  + 2 k  tanh ( k ( x - vt )) and  v ( x , t )  =  2 k  2  sech 2 ( k ( x - vt )). 

  B.2 Automated solutions  

 The first steps of the tanh-method by using this Mathe-

matica  ®   package for this example are shown in Figure  15  : 

  Step 1   –  transform the nonlinear PDE into a nonlin-

ear ODE in  T   =  tanh (  ξ  );  Step 2   –  determine the maximum 

degree of the polynomial solution;  Step 3   –  determine the 

nonlinear algebraic system for the coefficients. 

 The next steps to get the solution in tanh are in Figure 

16:  Step 4   –  solution of the algebraic system;  Step 5   –  

expressions of the wave solution for given expressions of 

  ξ  . We obtain the solutions: 

   ( ) 2
1

1

, - 2 tanh ,
c

u x t c
c

ξ= ±    where   ξ    =    δ   +  c  
1
  x  +  c  

2
  t  and   ( ),v x t

2 2

12 sech .c ξ=  For another wave vector ( c  
1
   =   k ,  c  

2
   =  - kv ), we 

obtain the solutions:  u ( x , t )  =   v   ±  2 k  tanh  ξ  and  v ( x , t )  =  2 k  2  

sech 2    ξ   where   ξ   =  k ( x-vt ) (Figure  16  ). 

   Appendix C. Stochastic control 
problem   55    
 The technique of stochastic control was developed by 

Fleming  [78]  in 1969. Introductions to this technique with 

applications are notably in [79, 80]. 

  C.1 Control problem  
 A finite-horizon stochastic problem consists of a value 

function which arguments are time  t , the state variables 

x( t ) ∈  X  ⊂     m   and controls  u  ∈  U , subject to a vector SDE. The 

problem may be written: 

    
( ) ( )0

0
maximize , , ,( )

T
i

u
E g x u t q x T⎡ ⎤+⎢ ⎥⎣ ⎦∫   

 
(48) 

 subject to 

   d x  =   f (x, u , t ) dt  +  σ (x, t ) d W.  (49) 

 and 

  x(0)  =  x 
0
   (50) 

 where  E  
0
  is the expectation operator at time 0,  σ [x,  t ] an 

   Θ   ×  m matrix, and W( t ) a  Θ -dimensional Wiener process. 

Let the covariance matrix be Ω[x(t), t]=σ[x(t), t] σ[x(t), t]T 

with its elements Ω
hς

 in raw h and column ς. 

  C.2 Theorem  

 A set of controls  u* ( t )   =   φ  (x ,t ) forms an optimal solution to 

the control problem (48) – (50), if there exist continuous 

differentiable functions   ( ) [ ], : 0, ,mV t T×x �RR R  satisfying 

the Hamilton-Jacobi-Bellman equation 

   

( ) ( ) ( )

( ) ( ) ( ){ }

 
, 1

1
- , - , ,

2

maximize , , , , , ,

h

m

t h x x

h

i

x
u

V t t V t

g u t V t f u t

ςς
ς=

Ω

= +

∑x x x

x x x
 

 and 

  V (x, T )  =   q ( x ). 

  Proof . See  [77] , pp. 16 – 18. 

  C.3 Example  

 Let the stochastic control problem 

   

( )
 

 
imize - -

0
0

max -
T

rt rT

u

c
E u e dt e q x T

x

⎡ ⎤⎛ ⎞ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫
 

 subject to 

   ( )- - ,dx a x b x u dt x dWσ= +   
 

 and  x (0)  =   x  
0
  ∈  X , where  a , b , c ,  σ   are positive parameters. 

Using the theorem, we have the two equations 

   ( )}

2 2 -1
- - maximize -

2

- - ,

rt

t xx
u

x

c
V x V u u e

x

V a x b x u

σ
⎧⎛ ⎞= ⎨⎜ ⎟⎝ ⎠⎩

+   

(51) 
 55   This presentation is inspired and extended from [77] with 

different notations. 
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 Figure 16    Boussinesq wave system by using Mathematica  ®  : wave solution in tanh.    

 Figure 15    Boussinesq wave system by using Mathematica  ®  : first steps of the tanh-method.    

 and 

    
( ) -, .rTV x T e q x=

 (52) 

 Performing maximization in Eq. (51) and solving in 

the control  u  yields: 

    ( )
( )* *

2 , .
4 rt

x

x
u x t

c V x e
φ= =

+  
 

(53)
 

 By substituting   φ   * ( x , t ) into Eq. (51), we get the PDE 

   

( ) ( )

( )

-
2 2

2

1
- 1-

2 2 2

- -
4

rt

t xx rt rt

x x

x rt

x

xe c
V x V

c V x e c V x e

x
V a x bx

c V x e

σ
⎛ ⎞

= + ×⎜ ⎟+ +⎝ ⎠

⎛ ⎞
+ ⎜ ⎟

+⎝ ⎠

  

 
 

 

(54) 

 For finding a closed form, we assume a solution of 

the following polynomial   ( ) ( )
0

,
M k

kk
V x t a t x

=
=∑  where 

the highest power  M  must be determined by balancing the 
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LHS and the RHS highest power of Eq. (54). We find that 

the polynomial solution is only valid for  M   =  1. We then 

have: 

   
( ) 0 1, .V x t a a x= +

 

 Letting  a  
0
   =   B ( t ) e  - rt   and  a  

1
   =   A ( t ) e  - rt  , we retain: 

    
( ) ( ) ( )( ) -, .rtV x t B t A t x e= +

 
(55) 

 Substituting this optimal value function into Eq. (54) 

and collecting terms yields the two conditions that  A ( t ) 

and  B ( t ) must satisfy: 

   

2
2 2

1 1
-

2 8 2 4 8
2 2 2

b c A
A r

A A A
c c c

σ⎛ ⎞+ + + +⎜ ⎟⎝ ⎠ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

'= A

 

 and 

   
- .

2

a
B rB A′=

 

 Substituting Eq. (55) into the boundary condition (52), 

we find that  A ( T )  =   q  and  B ( T )  =  0. By using (53), the optimal 

control for this stochastic problem is: 

   

( )*
2, .

4
2

x
x t

A
c

φ =
⎛ ⎞+⎝ ⎠
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