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Feuille no 1:

Variables aléatoires

1. (*) Soit l’espace de probabilité (Ω,A, IP) où Ω = [0, 1], A la tribu borélienne sur Ω et IP la probabilité
uniforme sur [0, 1].

(a) On pose X la variable aléatoire telle que X(ω) = 1 − ω pour tout ω ∈ Ω. Déterminer la loi de
probabilité de X, son espérance et sa variance.

(b) Répondre aux mêmes questions pour Y (ω) = − ln(ω).

(c) On pose Z(ω) = ω pour ω ∈ [0.5, 1] et Z(ω) = 0 pour ω ∈ [0, 0.5[. Déterminer la fonction de
répartition de Z.

2. (**) Sur (Ω,A, IP) un espace probabilisé, on considère une v.a. réelle positive X de fonction de
répartition FX . Déterminer dans les 2 cas suivants l’espérance et la variance de X:

FX(t) =
1

2

(
etII]−∞,0[(t) + (2 − e−t)II[0,∞[(t)

)
;

FX(t) =
1

4
(t + 2)II[−1,0[∪[1,2[(t) +

3

4
II[0,1](t) + II[2,∞[(t).

3. (*) Soit une variable aléatoire X sur l’espace de probabilité (Ω,A, IP). On suppose que pour tout
ω ∈ Ω, −ω ∈ Ω et également que la loi de X est symétrique, c’est-à-dire que la loi de X est la même
que celle de −X.

(a) Montrer que IP(X ≤ 0) ≥ 1/2 et IP(X < 0) ≤ 1/2. Conclusion?

(b) Montrer que si IE(|X|) < ∞ alors IE(X) = 0.

4. (**) Sur (Ω,A, µ) un espace probabilisé, on considère une v.a. réelle positive X de fonction de
répartition FX . Montrer, en utilisant Fubini, que pour n ∈ IN∗ :

IE[Xn] =

∫ ∞

0
n tn−1(1 − FX(t)) dt =

∫ ∞

0
n tn−1IP(X > t) dt.

Montrer que l’hypothèse X positive est nécessaire.

5. (***) Soit X une v.a. réelle normale centrée réduite. Soit la v.a. Y = eX . On dit que Y suit une loi
log-normale.

(a) Montrer que Y à une mesure de probabilité absolument continue par rapport à la mesure de

Lebesgue de densité fY (y) =
1√
2π

1

y
e−ln2

(y)/2 si z > 0 et 0 sinon.

(b) Pour a ∈ [−1, 1], soit Ya la v.a. de densité fa(y) = fY (y)(1 + a sin(2πln(y)). Montrer que Y et
Ya ont mêmes moments, et en déduire que les moments ne caractérisent pas une loi de probabilité.

6. (*) Soit X
L∼ E(λ) loi exponentielle de paramètre λ > 0. Quelle est la loi de Y = [X + 1]? (partie

entière de X + 1)

7. (**) Soit U une variable aléatoire uniforme sur [0, 1]. Soit X une variable de fonction de répartition
FX que l’on supposera strictement croissante et dérivable sur R.
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(a) Montrer FX est une fonction admettant une application réciproque sur ]0, 1[, notée F−1
X .

(b) Démontrer que la loi de la variable F−1
X (U) est la même que celle de X.

(c) A partir de la touche RAND d’une calculatrice, comment obtenir une réalisation d’une variable
aléatoire de loi exponentielle de paramètre 3?

(d) Même question si FX(x) = arctan(x)/π + 1/2. Quelle est alors l’espérance de F−1
X (U)?

8. (**) Calculer la fonction génératrice d’une variable aléatoire suivant une loi géométrique de paramètre
p. De même pour celle d’une loi de Poisson de paramètre λ. En déduire que la somme de 2 v.a.
indépendantes de lois de Poisson de paramètres λ1 et λ2 est une loi de Poisson. En est-il de même
pour la loi géométrique?

9. (*) Calculer la fonction caractéristique d’une variable aléatoire : a/ gaussienne, b/ de Poisson, c/
exponentielle, d/ uniforme, e/ gamma, f/ binomiale. En déduire que la somme de 2 v.a. gaussiennes
indépendantes est gaussienne.

10. (***) En utilisant la formule d’inversion de la fonction caractéristique pour les v.a. continues,
démontrer que la fonction de caractéristique d’une v.a. de Cauchy de densité f(x) = π−1(1 + x2)−1

sur R est ϕ(u) = e−|u|.

11. (***) Soit X une variable aléatoire réelle intégrable telle que IE[X] ≥ 0.

(a) Montrer que pour tout λ > 0, X ≤ λIE[X] + XII{X>λIE[X]}.

(b) On suppose que, de plus, 0 < IE[X2] < +∞. Montrer que(
IE[XII{X>λIE[X]}]

)2 ≤ IE[X2] Pr(X > λIE[X]).

(c) Montrer que pour tout λ ∈]0, 1[ on a l’Inégalité de Paley-Zygmund:

Pr(X > λIE[X]) ≥ (1 − λ)2
IE[X]2

IE[X2]
.
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Feuille no 2:

Vecteurs aléatoires

1. (*) Soit (X,Y ) un couple de variables aléatoires à valeurs dans R2 dont la loi a pour densité par
rapport à la mesure de Lebesgue sur R2,

f(X,Y )(x, y) =
2

π
e−x(1+y2)II{x,y≥0}.

(a) Vérifier que f(X,Y ) est bien une densité.

(b) Déterminer les lois de X et de Y . Les variables X et Y sont-elles indépendantes?

2. (*) Soient X1 et X2 deux v.a. indépendantes de même loi uniforme sur [0, 1].

(a) Déterminer les fonctions de répartition des v.a. U = min{X1, X2} et V = max{X1, X2}, et en
déduire les densités de probabilité de U et V .

(b) Calculer cov(U, V ). Les variables U et V sont-elles indépendantes?

(c) Que vaut IE
[
|X1 −X2|

]
?

3. (**) On considère X = (X1, X2) un vecteur aléatoire à valeurs dans IR2. On suppose que X est
absolument continue, c’est-à-dire que la mesure de probabilité de X est absolument continue par
rapport à la mesure de Lebesgue λ2 sur IR2.

(a) Montrer alors que la loi de X1 admet une densité f1 par rapport à la mesure de Lebegue λ1 sur
IR, que l’on exprimera en fonction de f .

(b) Calculer f1 et f2 pour f telle que :

f(x1, x2) =

{
e−x1 si x1 ≥ x2 ≥ 0

0 sinon.

A-t-on f(x1, x2) = f1(x1)f2(x2) pour λ2-presque tout (x1, x2) ∈ IR2? Quelle conclusion en tirer
sur X1 et X2?

(c) On suppose maintenant que X = (X1, X1) où X1 est absolument continue par rapport à λ1. Le
vecteur aléatoire X est-il absolument continue par rapport à la mesure de Lebesgue λ2 sur IR2?

4. (**) Soit L une v.a. positive admettant une densité de probabilité f et X une v.a. de loi uniforme
sur [0, 1] indépendante de L. On définit deux v.a. L1 et L2 par L1 = X L et L2 = (1 − X)L
(cela représente par exemple la rupture aléatoire en 2 morceaux de longueurs L1 et L2 d’une certaine
molécule de longueur initiale (aléatoire) L).

(a) Déterminer la loi du couple (L1, L2), ainsi que les lois marginales de L1 et L2.

(b) Que peut-on dire du couple (L1, L2) lorsque f(y) = II[0,+∞[(y)λ2ye−λy (λ > 0)?

(c) Déterminer la loi de Z = min{L1, L2}.

5. (**) On considère un couple indépendant de v.a. (X,Y ). On suppose que X admet une densité f
et que Y est une variable discrète qui prend ses valeurs dans {yn , n ∈ I} , I ⊆ N où (yn)n∈I ⊂ R.
Montrer que Z = X + Y possède une densité fZ et donner sa formule.
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6. (***) Soit (X1, · · · , Xn) un échantillon de n v.a.i.i.d. de loi exponentielle de paramètre 1.

(a) Montrer que IP(∃(i, j) ∈ {1, · · · , n}2, i ̸= j,Xi = Xj) = 0.

(b) On pose Z = min1≤i≤nXi. Déterminer la loi de Z.

(c) Soit N = min{1 ≤ i ≤ n,Xi = Z}. Montrer que N est une v.a. et établir que IP(N = k, Z > t) =
e−nt

n
pour k = 1, · · · , n et t > 0. En déduire que Z et N sont des v.a. indépendantes et préciser la loi
de N .

7. (**) Soient X1, . . . , Xn des v.a.i.i.d., uniformes sur [0, 1],.

(a) On pose Wi = − logXi. Montrer que Wi suit une loi exponentielle de paramètre 1.

(b) On rappelle qu’une loi Gamma Γ(α, β) de paramètres (p, α) avec α, β > 0 est une loi continue
de densité sur R:

f(α,β)(x) =
βα

Γ(α)
xα−1e−β x IIx>0

Soient U, V indépendants telles que U
L∼ Γ(α1, β) et V

L∼ Γ(α2, β). Quelle est la loi de U + V ?

(c) En déduire la loi de W1 + · · · + Wn.

(d) Utiliser le résultat précédent pour trouver la loi de
∏n

i=1Xi.

8. (**) Soient X et Y deux variables aléatoires exponentielles indépendantes de paramètres α > 0 et
β > 0. On pose S = min(X,Y ) et T = |X − Y |.

(a) Calculer IP(S > a, T > b,X > Y ) et IP(S > a, T > b,X < Y ).

(b) En déduire IP(X < Y ), la loi de S, et la loi de T .

9. (**) Soit (X1, X2, X3) vecteur aléatoire centré de matrice de covariance

A =

 2 1 3
1 5 6
3 6 9


(a) Calculer la variance de X3 − α1X1 − α2X2.

(b) En déduire que X3 est une combinaison linéaire de X1 et X2 p.s.

(c) Plus généralement, pour un vecteur aléatoire Y de matrice de covariance Γ, donner une condition
nécessaire et suffisante sur Γ pour que l’une des composantes de Y soit une fonction affine des
autres composantes de Y p.s.

(d) Soit maintenant Z un vecteur aléatoire à valeurs dans Rd, d ≥ 1. Supposons que Z admette une
densité f par rapport à la mesure de Lebesgue sur Rd. Soit x ∈ Rd un vecteur non-nul. Montrer
qu’alors la v.a. U = xtZ a une densité sur R.

(e) Si Y est un vecteur aléatoire de matrice de covariance non-inversible, peut-il avoir une densité?
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Feuille no 3:

Vecteurs gaussiens

1. (*) Soit X = (X1, X2, X3) un vecteur gaussien centré de matrice de covariance

Γ =

 3 1 0
1 2 0
0 0 1

 .

(a) Quelle est la loi de X3 et celle de (X1, X2) et que peut-on dire de ces 2 vecteurs aléatoires?

(b) Déterminer la densité de la loi de (X1, X2, X3).

(c) Quelle est la loi de (X1 −X2, X3 −X1)?

2. (**) Soit X une v.a. réelle normale centrée réduite et soit Y une v.a. indépendante de X, à valeurs
dans {−1, 1} telle que IP(Y = 1) = 0.5. On considère la v.a. Z = X Y .

(a) Déterminer la mesure de probabilité de Z.

(b) Déterminer cov(X,Z). Les variables X et Z sont-elles indépendantes?

(c) Déterminer la mesure de probabilité de X + Z. En déduire que la somme de 2 variables gaussi-
ennes non-corrélées peut ne pas être gaussienne.

3. (*) Soit X et Y deux v.a. indépendantes de loi commune N (0, 1). Déterminer la loi de Z =
1√
2

(
X + Y

)
, celle de W = 1

2 (X − Y )2 et enfin celle de Z/
√
W .

4. (**) Soient X et Y des v.a. indépendantes de loi N (0, 1).

(a) Déterminer la loi du couple de (X + Y,X − Y ). Que remarque-t-on?

(b) Déterminer également la loi du couple (X/Y, Y ) puis celle de la v.a. X/Y . Les v.a. X/Y et Y
sont elles indépendantes?

(c) En déduire la densité de la loi de Student de degré 1.

5. (**) Soit X = (X1, X2) un vecteur gaussien centré de matrice de covariance

Γ =

(
1 2
2 4

)
.

(a) Montrer que Γ est bien une matrice de variance-covariance et déterminer ses valeurs propres et
leurs sous-espaces propres associés.

(b) Démontrer que IE[(2X1 −X2)
2] = 0. En déduire la densité de la loi de (X1, X2) par rapport à

une mesure que l’on précisera.

(c) Généraliser à un vecteur gaussien quelconque dont la matrice de covariance est singulière.

6. (***) Soit X = (X1, X2, X3, X4) un vecteur gaussien centré de matrice de covariance Γ.

(a) Démontrer que IE
[
e<s,X>

]
= e

1
2

tsΓ s pour tout s ∈ R4. En utilisant l’unicité du développement

en série entière, en déduire que IE
[
< s,X >4

]
= 3

(
tsΓ s

)2
. En déduire que

IE
[
X1X2X3X4

]
= IE[X1X2] IE[X3X4] + IE[X1X3] IE[X2X4] + IE[X1X4] IE[X2X3].
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(b) Déduire également que IE[X1X2X3] = 0.

(c) Si (X,Y ) est un vecteur gaussien d’espérance m et de matrice de variance-covariance Γ =( σ2
X σXY

σXY σ2
X

)
, en déduire var(X2) et cov(X2, Y 2).
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Feuille no 4:

Convergence et théorèmes limites

0. (*) Soit X0 une v.a. définie sur (Ω,A, IP) et pour n ∈ N∗, on définit Xn = X0/n. Démontrer que
(Xn) converge en loi, en probabilité et presque-sûrement vers une limite que l’on précisera. Qu’en
est-il pour la convergence dans  Lp?

1. (*) Soit (Xn)n une suite i.i.d. de variables de Bernoulli de paramètre θ ∈]0, 1[.

(a) Montrer que Xn = n−1
∑n

i=1Xi
P−→

n→+∞
θ. En déduire que Xn(1 −Xn)

P−→
n→+∞

θ(1 − θ).

(b) Montrer que
√
n(Xn − θ)

L−→
n→∞

N (0, θ(1 − θ)).

(c) Montrer que
√
n(Xn − θ)2

P−→
n→+∞

0.

(d) Déterminer la loi limite de
√
n
(
Xn(1 −Xn) − θ(1 − θ)

)
pour θ ̸= 1/2.

2. (*) Soit (Xk)k∈IN une suite de v.a. telle que IE[X2
k ] < ∞ pour tout k ∈ N et cov(Xi, Xj) = 0 pour

i ̸= j. On suppose qu’il existe des réels m et C tels que pour tout k, IE[Xk] = m et varXk ≤ C.
Montrer que la suite des Xn converge vers m dans IL2 et en probabilité.

3. (**) Soit Ω = [0, 1] et soit la suite (Xn) de v.a. définies sur (Ω,B([0, 1]), IP) où IP est la loi uniforme
sur [0, 1] et telle que pour tout n ∈ N:

Xn(ω) = (n + 1)2 ωn − (n + 1) pour tout ω ∈ [0, 1].

Que vaut IE[Xn]? Démontrer pourtant que Xn
P−→

n→+∞
−∞. La suite (Xn) converge-t-elle dans IL2?

4. (**) On suppose Xn
L−→

n→∞
c pour une suite de v.a. (Xn)n à valeurs réelles et c ∈ R. Soit ϕ : R+ → R

définie par ϕ(x) = min(x, 1).

(a) Soit ε > 0. En utilisant une caractérisation de la convergence en loi, quelle est la limite de
IE[ϕ(|Xn − c|/ε)] quand n → ∞?

(b) En déduire que Xn
P−→

n→+∞
c.

5. (***) Soit (Xn)n∈IN une suite de v.a.i.i.d. telle que IE[X2
1 ] < ∞. Soit Yk = Xk pour k ≥ 1. Peut-on

obtenir la loi faible des grands nombres pour la suite (Yk)? La loi forte des grands nombres? Dans
le cas particulier où les Xk suivent une loi normale centrée réduite déterminer un théorème de limite
centrale.

6. (**) Appliquer le théorème limite central à une suite de v.a.i.i.d. de loi de Poisson de paramètre 1
pour trouver la limite de la suite

un = e−n
n∑

k=0

nk

k!
.
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7. (***) Soit (Xn)n une suite de v.a.i.i.d. centrées de variance commune 1. Soit (ai,n)1≤i≤n, n∈N une
famille de réels telle que

∑n
i=1 a

2
i,n = 1 pour tout n ∈ N∗. On va montrer que si max1≤i≤n |ai,n| −→

n→∞
0,

alors la suite des (Sn) telle que Sn =
∑n

i=1 ai,nXi converge en loi vers la loi N (0, 1).

(a) Montrer que si (zj) et (z′j) sont deux familles de nombres complexes tels que |zj | ≤ 1 et |z′j | ≤ 1
pour tout j, alors ∣∣∣ n∏

j=1

zj −
n∏

j=1

z′j

∣∣∣ ≤ n∑
j=1

|zj − z′j |.

(b) Déterminer la fonction caractéristique de Sn. En déduire sa limite en utilisant l’inégalité précédente.

8. (**) Soit (Xn)n une suite de v.a.i.i.d. centrées de variance commune σ2 > 0.

(a) Rappeler la limite en loi de Sn telle que Sn =
1

σ
√
n

n∑
j=1

Xj .

(b) Décomposer la variable S2n en fonction de Sn et d’une variable aléatoire S′
n indépendante de Sn

et de même loi.

(c) En raisonnant par l’absurde, montrer que Sn ne converge pas en probabilité (on pourra montrer
que si c’était le cas, S′

n convergerait aussi en probabilité et étudier sa limite).
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Feuille no 5:

Estimation paramétrique

1. (*) Soit un n-échantillon (X1, . . . , Xn) de v.a.i.i.d. suivant une loi de Poisson P(θ), où θ > 0 est
inconnu. Déterminer un estimateur du maximum de vraisemblance de θ. Est-il biaisé? Convergent?
Efficace?

2. (**) Soit un n-échantillon (X1, . . . , Xn) de v.a.i.i.d. suivant une loi de densité fθ(x) = (θ+1)xθ II0<x≤1

par rapport à la mesure de Lebesgue sur R, où θ > 0 est inconnu. Déterminer l’estimateur du maxi-
mum de vraisemblance θ̂ de θ. Après avoir calculé IE[log(X1)], montrer que θ̂ est convergent.

3. (*) On considère un n-échantillon (X1, . . . , Xn) dont la loi dépend d’un paramètre θ ∈ R inconnu.
Soit θ̂1 et θ̂2 deux estimateurs non biaisés de θ, tels que IE[θ̂21 + θ̂22] < ∞. Pour α ∈ [0, 1] on considère

θ̂ = α θ̂1 + (1 − α) θ̂2 et on notera R(θ̂1), R(θ̂2) et R(θ̂) les risques quadratiques de θ̂1, θ̂2 et θ̂.

(a) On suppose que θ̂1 et θ̂2 sont indépendants. Déterminer α en fonction de R(θ̂1) et R(θ̂2), de telle
manière que le R(θ̂) soit minimum. Que vaut alors R(θ̂)?

(b) Si θ̂1 et θ̂2 ne sont pas indépendants, montrer que l’on a tout de même

R(θ̂) ≤ 2
R(θ̂1)R(θ̂2)

R(θ̂1) + R(θ̂2)
.

4. (**) On considère un n-échantillon (X1, . . . , Xn) de v.a.i.i.d. suivant une loi E(λ), où λ > 0 est
inconnu.

(a) Déterminer l’estimateur λ̂ par maximum de vraisemblance de λ.

(b) Déterminer la loi de
∑n

j=1Xj . En déduire que λ̂ est biaisé.

(c) L’estimateur λ̂ est-il convergent?

(d) Etablir un TLC vérifié par 1/λ̂. En déduire un intervalle de confiance asymptotique de niveau
95% pour λ.

(e) En utilisant la Delta-Méthode déterminer un TLC vérifié par λ̂. En déduire que λ̂ est asympto-
tiquement efficace.

5. (**) On considère un n-échantillon (X1, . . . , Xn) de v.a.i.i.d. suivant la loi binomiale B(k, p), où
p ∈]0, 1[ est inconnu alors que k ∈ IN∗ est connu. On voudrait estimer la probabilité θ = IP(X1 = 1).

(a) Déterminer l’estimateur p̂ par maximum de vraisemblance de p. Est-il biaisé? Efficace? Etablir
un TLC vérifié par p̂.

(b) En déduire un estimateur θ̂ de θ. Est-il convergent? Etablir un TLC vérifié par θ̂ pour p ̸= 1/k.
En utilisant le lemme de Slutsky, déterminer un intervalle de confiance asymptotique de niveau
95% pour θ.

(c) Soit θ̃ = 1
n

∑n
j=1 IIXj=1. Montrer que θ̃ est non biaisé. Etablir un TLC vérifié par θ̃. Pour p

proche de 0, de 1 et de 1/k, quel estimateur préférer entre θ̂ et θ̃?

6. (**) On considère un n-échantillon (X1, . . . , Xn) de v.a.i.i.d. suivant la loi binomiale B(k, p), où
p ∈]0, 1[ et k ∈ IN∗ sont inconnus. Obtenir explicitement l’estimateur par maximum de vraisemblance
de (p, k) est très difficile, dans cet exercice on essaie autre chose.
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(a) Rappeler l’espérance m et la variance σ2 de X1.

(b) Déterminer des estimateurs naturels de m et σ2. Sont-ils convergents?

(c) En déduire des estimateurs convergents de p et de k.

7. (**) Soit ((Ω′)n,A′
n, (IPθ)

⊗n, θ ∈]0,∞[) un modèle paramétrique tel que IPθ admette pour densité par
rapport à la mesure de Lebesgue sur R:

f(x) =
1

log 2

1

x
IIx∈]θ,2θ[.

(a) Montrer que l’estimateur du maximum de vraisemblance pour ce modèle n’est pas unique.

(b) On observe (X1, . . . , Xn) du modèle statistique et on pose θ̂(1)n =
1

2
max(X1, . . . , Xn) et θ̂(2)n = min(X1, . . . , Xn).

Déterminer la loi de ces estimateurs et montrer qu’ils convergent. Sans rentrer dans les calculs,
donner un court raisonnement montrant qu’ils sont biaisés.

8. (**) Soit X une v.a. suivant une loi binomiale B
(
n, 1

λ

)
où n ∈ N∗ est connu et λ ≥ 1 est inconnue.

On observe une réalisation de X est on estime λ par un estimateur λ̂ = λ̂(X).

(a) Montrer que si λ̂ est un estimateur sans biais de λ, alors pour tout λ ∈ [1,∞[,

λn+1 −
n∑

k=0

(
n
k

)
λ̂(k) (λ− 1)n−k = 0.

(b) En déduire qu’il n’existe pas d’estimateur λ̂ sans biais de λ.

9. (**) Soit un n-échantillon de v.a.i.i.d. (X1, . . . , Xn) de loi admettant la densité f par rapport à la
mesure de Lebesgue sur IR avec:

f(x) = (1 − θ) · II]−1/2,0[(x) + (1 + θ) · II]0,1/2[(x),

où θ ∈] − 1, 1[ est un paramètre inconnu.

(a) Déterminer l’estimateur θ̂n du maximum de vraisemblance.

(b) Est-il sans biais? Converge-t-il? θ̂n est-il un estimateur efficace?

(c) Quelle est la loi limite de
√
n(θ̂n − θ)? En déduire un intervalle de confiance à 95%.

10. (**) On considère le modèle paramétrique gaussien (IRn,B(IRn),N (m,σ2)⊗n, (m,σ2) ∈ IR×]0,+∞[)
et (X1 . . . , Xn) un échantillon observé de ce modèle.

(a) Soit l’estimateur T̂n = (Xn, σ
2
n), où Xn =

1

n

n∑
i=1

Xi et σ2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2. En utilisant

le théorème de Cochran (on considérera le sous-espace engendré par le vecteur de Rn, (1, . . . , 1)′),
montrer que cet estimateur est sans biais et que ses 2 composantes sont indépendantes. Est-il
efficace?

(b) Déterminer l’estimateur du maximum de vraisemblance de (m,σ2). Est-il biaisé? Efficace? Com-
parer avec l’estimateur précédent.

11. (***) Soit ((Ω′)n,A′
n, (IPθ)

⊗n, θ ∈]0,∞[) un modèle paramétrique tel que IPθ admette pour densité
par rapport à la mesure de Lebesgue sur R:

f(x) = IIx∈]θ,θ+1[.
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(a) Montrer que l’estimateur du maximum de vraisemblance pour ce modèle n’est pas unique.

(b) On pose θ̂(1)n = max(X1, . . . , Xn) − 1 et θ̂(2)n = min(X1, . . . , Xn). Pour chacun de ces estimateurs,
déterminer la loi, l’espérance et la variance. Sont-ils convergents? Efficaces?

(c) Déterminer un estimateur de la forme θ̂n = α θ̂(1)n + (1 − α) θ̂(2)n , avec α ∈ [0, 1], qui soit sans
biais.

(d) Pour n = 2, déterminer cov
(
θ̂
(1)
2 , θ̂

(2)
2

)
. Le risque quadratique de θ̂2 est-il inférieur à ceux de θ̂

(1)
2

et θ̂
(1)
2 ? θ̂2 est-il efficace?

12. (***) Soit un n-échantillon (X1, . . . , Xn) de v.a. telles que X1 suit une loi de Bernoulli de paramètre
1/2, et IP(Xn+1 = 1 | Xn = 1) = IP(Xn+1 = 0 | Xn = 0) = p et IP(Xn+1 = 1 | Xn = 0) = IP(Xn+1 =
0 | Xn = 1) = 1 − p pour n ∈ IN∗, avec p ∈]0, 1[ un paramètre inconnu.

(a) Montrer que pour tout k ∈ N∗, Xk
L∼ B(1/2).

(b) Déterminer l’estimateur de maximum de vraisemblance de p. Est-il biaisé?
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Feuille no 6:

Tests paramétriques

1. (*) Dix coureurs de 1500 m testent si la prise d’un complément alimentaire non dopant améliore leurs
performances. Ils courrent un 1500 m sans le produit (ou plutôt avec un placébo) et 2 jours après
un autre 1500 m avec le produit. On note D1, . . . , D10 la différence entre leur temps de cours sans
et avec le complément alimentaire. On supposera que les Di sont des v.a.i.i.d. gaussiennes. On veut
tester entre H0: le produit n’a pas d’effet, et H1: le produit a un effet positif. Sur les 10 coureurs, on
a obtenu en moyenne 3s de moins entre les 2 courses avec un écart-type de 4s. Déterminer le résultat
du test avec un niveau de risque de 5%.

2. (**) On a lancé 100 fois une pièce de monnaie et obtenu 58 fois pile. Avec un niveau α = 0.05, tester
si la pièce est équilibrée (on pourra utiliser d’abord une inégalité de Bienaymé-Tchebychev puis une
approximation gaussienne). Déterminer une formule permettant de calculer la fonction puissance du
test en fonction de p. Tester également si la pièce est truquée toujours avec une erreur de première
espèce α = 0.05. Aboutit-on à la même conclusion du test?

3. (*) Une châıne des magasins décide d’adopter une nouvelle politique de gestion des stocks pour
l’ensemble de ses succursales. Auparavant, le bénéfice mensuel d’une succursale était en moyenne
égal à 300000 euros. Après la mise en place de la nouvelle politique pour 100 succursales ”pilotes”,
on observe un bénéfice moyen de 305000 euros avec un écart-type de 20000 euros. En utilisant une
approximation gaussienne, peut-on conclure à l’efficacité de cette politique au niveau 5%? 1%? Et
que se passe-t-il si l’hypothèse testée est que la politique n’a pas d’effet?

4. (**) Dans le cas d’un échantillon (X1, · · · , Xn) de v.a.i.i.d. de loi E(λ), où λ est inconnu. On considère
les différents problèmes de test suivants:

(1) H0 : λ = 1 contre H1 : λ = 2;

(2) H0 : λ = 1 contre H1 : λ > 1;

(3) H0 : λ < 1 contre H1 : λ > 1;

(4) H0 : λ = 1 contre H1 : λ ̸= 1.

(a) En utilisant le TLC donné exercice 4 du TD5, déterminer le test de Wald de niveau 5% (statistique
de test, région critique en fonction du niveau α = 0.05) pour ces différents tests.

(b) Faire ensuite la même chose avec le test du rapport de vraisemblance.

5. (***) On suppose que le nombre de clients N attendant à la caisse d’un grand magasin à 11h00 du
matin peut être modélisé par une loi de Poisson de paramètre θ > 0. On sait que pour les clients la
limite du supportable en attente est de voir au maximum 5 clients devant une caisse. La question
se pose de savoir si l’on doit augmenter ou nom le nombre de personnes travaillant aux caisses: ceci
conduit à un problème de test sur l’opportunité d’embaucher.

(a) Pour la direction, peu désireuse d’embaucher, le problème se pose de la manière suivante:
H0 : θ ≤ 5 contre H1 : θ > 5 à tester avec le niveau 5%; ainsi, la direction veut que la probabilité
d’embaucher alors qu’il n’y en a pas besoin est contrôlée (moins de 5%) sans s’intéresser à l’autre
erreur possible (qui est de ne pas embaucher alors qu’il le fallait).

(b) Pour les syndicats, la position est inverse: on veut surtout éviter de ne pas embaucher alors qu’il
le fallait. Ils vont tabler sur le fait l’erreur de seconde espèce du test soit de 5%.
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Dans les deux cas, sachant que l’on dispose 1/ d’une seule observation de valeur 6; 2/ de 100 obser-
vations de moyenne 5.4, déterminer les résultats des tests du rapport de vraisemblance. On pourra
utiliser les quantiles d’ordre 0.95 d’une loi de Poisson de paramètre 5 (9) et d’une loi de Poisson de
paramètre 500 (537).


