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Feuille n° 1:

Variables aléatoires

. (*) Soit l'espace de probabilité (€2, .A,IP) ou 2 = [0, 1], A la tribu borélienne sur 2 et IP la probabilité
uniforme sur [0, 1].

(a) On pose X la variable aléatoire telle que X (w) = 1 — w pour tout w € . Déterminer la loi de
probabilité de X, son espérance et sa variance.
(b) Répondre aux mémes questions pour Y (w) = —In(w).

(¢) On pose Z(w) = w pour w € [0.5,1] et Z(w) = 0 pour w € [0,0.5[. Déterminer la fonction de
répartition de Z.

. (**) Sur (Q,A,IP) un espace probabilisé, on considére une v.a. réelle positive X de fonction de
répartition F'y. Déterminer dans les 2 cas suivants ’espérance et la variance de X:

1 _
Fx(t) = 5 (e'M_oo0(t) + (2 — e g o (1)) 5
1 3
Fx(t) = 1 (t +2)_q oup2f(t) + 1 o 17 () + Mg o0 (1)-

. (*) Soit une variable aléatoire X sur l’espace de probabilité (€2,.4,IP). On suppose que pour tout
w € N, —w € ) et également que la loi de X est symétrique, c’est-a-dire que la loi de X est la méme
que celle de —X.

(a) Montrer que IP(X <0) >1/2 et IP(X < 0) <1/2. Conclusion?
(b) Montrer que si IE(|X|) < oo alors IE(X) = 0.

. (**) Sur (©,A, 1) un espace probabilisé, on considére une v.a. réelle positive X de fonction de
répartition F'x. Montrer, en utilisant Fubini, que pour n € IN* :

E[X"] = /Ooontnl(l — Fx(t))dt = /OoontnllP(X > t) dt.

Montrer que ’hypothese X positive est nécessaire.

. (***) Soit X une v.a. réelle normale centrée réduite. Soit la v.a. Y = eX. On dit que Y suit une loi
log-normale.

(a) Montrer que Y a une mesure de probabilité absolument continue par rapport & la mesure de

2
Ll e_ln ®/2 & 2 >0 et 0 sinon.

V2mYy
(b) Pour a € [—1,1], soit Y, la v.a. de densité f,(y) = fy(y)(1 + asin(27ln(y)). Montrer que Y et
Y, ont mémes moments, et en déduire que les moments ne caractérisent pas une loi de probabilité.

Lebesgue de densité fy(y) =

. (*) Soit X £ E(A) loi exponentielle de parametre A > 0. Quelle est la loi de Y = [X + 1]7 (partie
entiere de X + 1)

. (**) Soit U une variable aléatoire uniforme sur [0,1]. Soit X une variable de fonction de répartition
Fx que 'on supposera strictement croissante et dérivable sur R.



(a) Montrer Fx est une fonction admettant une application réciproque sur ]0, 1], notée Fi'.
(b) Démontrer que la loi de la variable F5;'(U) est la méme que celle de X.

(¢) A partir de la touche RAND d’une calculatrice, comment obtenir une réalisation d’une variable
aléatoire de loi exponentielle de parametre 37

(d) Méme question si Fx(z) = arctan(z)/7 4+ 1/2. Quelle est alors 'espérance de Fy'(U)?

8. (**) Calculer la fonction génératrice d’une variable aléatoire suivant une loi géométrique de parametre
p. De méme pour celle d’une loi de Poisson de parametre A\. En déduire que la somme de 2 v.a.
indépendantes de lois de Poisson de parametres A\; et Ao est une loi de Poisson. En est-il de méme
pour la loi géométrique?

9. (*) Calculer la fonction caractéristique d’une variable aléatoire : a/ gaussienne, b/ de Poisson, ¢/
exponentielle, d/ uniforme, e/ gamma, f/ binomiale. En déduire que la somme de 2 v.a. gaussiennes
indépendantes est gaussienne.

10. (***) En utilisant la formule d’inversion de la fonction caractéristique pour les v.a. continues,
démontrer que la fonction de caractéristique d’une v.a. de Cauchy de densité f(x) = 7~ 1(1 4+ 22)~!
sur R est ¢(u) = e~ 14,

11. (***) Soit X une variable aléatoire réelle intégrable telle que IE[X] > 0.
(a) Montrer que pour tout A > 0, X < AE[X] + Xy x> \g[x)}-
(b) On suppose que, de plus, 0 < IE[X?] < 4+00. Montrer que

(BIX Ly oamixy])” < BX?] Pr(X > AE[X)).

(c) Montrer que pour tout A €]0, 1] on a I'Inégalité de Paley-Zygmund:

2
Pr(X > AE[X]) > (1 — )\)QE;L.

—



Feuille n° 2:

Vecteurs aléatoires

. (*) Soit (X,Y) un couple de variables aléatoires & valeurs dans R? dont la loi a pour densité par
rapport & la mesure de Lebesgue sur R?,

2 _, 2
fan(@,y) = - e ity )]I{:c,yZO}'

(a) Vérifier que f(x,y) est bien une densité.

(b) Déterminer les lois de X et de Y. Les variables X et Y sont-elles indépendantes?

. (*) Soient X; et Xo deux v.a. indépendantes de méme loi uniforme sur [0, 1].

(a) Déterminer les fonctions de répartition des v.a. U = min{X;, Xo} et V = max{X;, X2}, et en
déduire les densités de probabilité de U et V.

(b) Calculer cov(U, V). Les variables U et V sont-elles indépendantes?
(¢) Que vaut IE[| X — X,|]?

. (**) On considére X = (X1, X5) un vecteur aléatoire & valeurs dans IR?2. On suppose que X est
absolument continue, c’est-a-dire que la mesure de probabilité de X est absolument continue par
rapport & la mesure de Lebesgue A sur IR%.

(a) Montrer alors que la loi de X; admet une densité fi par rapport a la mesure de Lebegue A\ sur
IR, que 'on exprimera en fonction de f.

(b) Calculer fi et fo pour f telle que :

et sixy > x>0

0 sinon.

f(a1, @) :{

A-t-on f(x1,22) = fi(x1)f2(x2) pour Ag-presque tout (z1,x2) € IR?? Quelle conclusion en tirer
sur X7 et Xo7?

(¢) On suppose maintenant que X = (X7, X7) ou X; est absolument continue par rapport a A\;. Le
vecteur aléatoire X est-il absolument continue par rapport a la mesure de Lebesgue Ao sur IR??

. (**) Soit L une v.a. positive admettant une densité de probabilité f et X une v.a. de loi uniforme
sur [0,1] indépendante de L. On définit deux v.a. Ly et Ly par Ly = XL et Ly = (1 — X)L
(cela représente par exemple la rupture aléatoire en 2 morceaux de longueurs L et Lo d’une certaine
molécule de longueur initiale (aléatoire) L).

(a) Déterminer la loi du couple (L1, Lo), ainsi que les lois marginales de Ly et Lo.
(b) Que peut-on dire du couple (L1, Lo) lorsque f(y) = H[07+oo[(y))\2ye_)‘y (A>0)7
(c) Déterminer la loi de Z = min{Lq, Lo}.

. (**) On considére un couple indépendant de v.a. (X,Y). On suppose que X admet une densité f
et que Y est une variable discrete qui prend ses valeurs dans {y,,n € I}, I € N ou (yn),c; C R.
Montrer que Z = X 4+ Y possede une densité fz et donner sa formule.



6. (***) Soit (Xy,---,X,) un échantillon de n v.a.i.i.d. de loi exponentielle de parametre 1.

(a) Montrer que IP(3(4,7) € {1,--- ,n}%i #j,X; = X;) = 0.

(b) On pose Z = minj<;<, X;. Déterminer la loi de Z.

—nt
(¢) Soit N =min{l <i<n,X; = Z}. Montrer que N est une v.a. et établirque IP(N =k, Z > 1) = ¢
pour k=1,--- ;nett>0. En déduire que Z et N sont des v.a. indépendantes et préciser la loi
de N.
7. (**) Soient X1,..., X, des v.a.i.i.d., uniformes sur [0, 1],.
(a) On pose W; = —log X;. Montrer que W suit une loi exponentielle de parameétre 1.

(b) On rappelle qu'une loi Gamma I'(«, 3) de parametres (p,«) avec a, 8 > 0 est une loi continue

de densité sur R: go
_ a—1_—fx
f(oc,ﬁ) (.Z') - F(a) €z € B ;>0

Soient U, V' indépendants telles que U £ I(ag,B) et V L I'(ag, B). Quelle est la loi de U + V7

(c) En déduire la loi de Wy + - -+ + W,.

(d) Utiliser le résultat précédent pour trouver la loi de [ X;.
8. (**) Soient X et Y deux variables aléatoires exponentielles indépendantes de parametres o > 0 et
£ >0. Onpose S=min(X,Y)et T =|X -Y]|.

(a) Calculer P(S > a, T >b,X>Y)et IP(S>a,T>0,X<Y).
(b) En déduire IP(X < Y'), la loi de S, et la loi de T

9. (**) Soit (X1, X2, X3) vecteur aléatoire centré de matrice de covariance

A=

W = N

1
5
6

O O W

(a) Calculer la variance de X3 — a1 X7 — aa Xo.
(b) En déduire que X3 est une combinaison linéaire de X; et X p.s.

(c) Plus généralement, pour un vecteur aléatoire Y de matrice de covariance I', donner une condition
nécessaire et suffisante sur I' pour que 'une des composantes de Y soit une fonction affine des
autres composantes de Y p.s.

(d) Soit maintenant Z un vecteur aléatoire & valeurs dans R?, d > 1. Supposons que Z admette une
densité f par rapport a la mesure de Lebesgue sur R%. Soit z € R? un vecteur non-nul. Montrer
qu’alors la v.a. U = 2'Z a une densité sur R.

(e) SiY est un vecteur aléatoire de matrice de covariance non-inversible, peut-il avoir une densité?




Feuille n° 3:

Vecteurs gaussiens

1. (*) Soit X = (X1, X2, X3) un vecteur gaussien centré de matrice de covariance
310
I'=1 120
0 01

(a) Quelle est la loi de X3 et celle de (X7, X2) et que peut-on dire de ces 2 vecteurs aléatoires?
(b) Déterminer la densité de la loi de (X7, X9, X3).
(¢) Quelle est la loi de (X7 — Xo, X3 — X7)?

2. (**) Soit X une v.a. réelle normale centrée réduite et soit Y une v.a. indépendante de X, a valeurs
dans {—1,1} telle que IP(Y = 1) = 0.5. On considere lav.a. Z=XY.
(a) Déterminer la mesure de probabilité de Z.
(b) Déterminer cov(X, Z). Les variables X et Z sont-elles indépendantes?

(c) Déterminer la mesure de probabilité de X + Z. En déduire que la somme de 2 variables gaussi-
ennes non-corrélées peut ne pas étre gaussienne.

3. (*) Soit X et Y deux v.a. indépendantes de loi commune A(0,1). Déterminer la loi de Z =

75 (X +Y), celle de W = 5 (X —Y)? et enfin celle de Z/v/IW.

4. (**) Soient X et Y des v.a. indépendantes de loi N (0,1).

(a) Déterminer la loi du couple de (X +Y, X —Y). Que remarque-t-on?

(b) Déterminer également la loi du couple (X/Y,Y') puis celle de la v.a. X/Y. Les v.a. X/Y et Y
sont elles indépendantes?

(¢) En déduire la densité de la loi de Student de degré 1.

5. (**) Soit X = (X1, X2) un vecteur gaussien centré de matrice de covariance

1 2
= .
(a) Montrer que I' est bien une matrice de variance-covariance et déterminer ses valeurs propres et

leurs sous-espaces propres associés.

(b) Démontrer que IE[(2X] — X5)?] = 0. En déduire la densité de la loi de (X7, X2) par rapport a
une mesure que ’on précisera.

(c) Généraliser a un vecteur gaussien quelconque dont la matrice de covariance est singuliere.

6. (***) Soit X = (X1, Xo, X3, X4) un vecteur gaussien centré de matrice de covariance T

<s,X>] — e% tsTs

(a) Démontrer que IE[e pour tout s € R*. En utilisant I'unicité du développement

en série entiere, en déduire que IE[ <5, X >4 ] =3 (ts r 3)2. En déduire que

E[X1X2X3X4] = IE[XlXQ] ]E[X3X4] + IE[X1X3] E[X2X4] + ]E[X1X4] IE[XQX;;].



(b) Déduire également que IE[X; X5 X3] = 0.
(¢) Si (X,Y) est un vecteur gaussien d’espérance m et de matrice de variance-covariance I' =

2
( ox U)QY ), en déduire var(X?) et cov(X?,Y?).
oxy Oo%



Feuille n° 4:

Convergence et théoremes limites

. (*) Soit X une v.a. définie sur (2, 4,IP) et pour n € N*, on définit X,, = Xy/n. Démontrer que
(X,) converge en loi, en probabilité et presque-sirement vers une limite que 1’on précisera. Qu’en
est-il pour la convergence dans LP?

. (*) Soit (X,), une suite i.i.d. de variables de Bernoulli de parametre 6 €]0, 1].

(a) Montrer que X, =n~1Y " | X; P, 9. En déduire que X,(1-X,) N 6(1—0).
n—-+oo n—-+oo
(b) Montrer que /n(X, — ) _% N(0,0(1 —0)).
(c) Montrer que /n(X, — 0)? % 0.
n—-+0oo

(d) Déterminer la loi limite de /n (Xn(1 — Xy) — 6(1 — 6)) pour § # 1/2.

. (*) Soit (Xi)gew une suite de v.a. telle que IE[X?] < co pour tout k € N et cov(X;, X;) = 0 pour
i # j. On suppose qu’il existe des réels m et C tels que pour tout k, IE[Xy] = m et varX < C.
Montrer que la suite des X,, converge vers m dans IL? et en probabilité.

. (**) Soit Q = [0, 1] et soit la suite (X,,) de v.a. définies sur (€2, 5([0,1]),IP) ot IP est la loi uniforme
sur [0,1] et telle que pour tout n € N:

X,(w)=(n+1)2?w"—(n+1) pour tout w € [0,1].

Que vaut IE[X,,]? Démontrer pourtant que X, % — co. La suite (X,,) converge-t-elle dans IL2?
n—-—+0oo

. (**) On suppose X, £y e pour une suite de v.a. (X)), a valeurs réelles et c € R. Soit ¢ : Ry -+ R
n—oo

définie par ¢(z) = min(z, 1).

(a) Soit € > 0. En utilisant une caractérisation de la convergence en loi, quelle est la limite de
E[¢(| X, — c|/e)] quand n — oo?
(b) En déduire que X, £ oe

n—-+00

. (***) Soit (X,,)new une suite de v.a.ii.d. telle que IE[X?] < co. Soit Yy = X pour k& > 1. Peut-on
obtenir la loi faible des grands nombres pour la suite (Yj)? La loi forte des grands nombres? Dans
le cas particulier ou les X}, suivent une loi normale centrée réduite déterminer un théoreme de limite
centrale.

. (**) Appliquer le théoreme limite central & une suite de v.a.i.i.d. de loi de Poisson de parametre 1
pour trouver la limite de la suite
no ok
n
. —n
Up =€ E e
k=0



7. (***) Soit (X,), une suite de v.a.i.i.d. centrées de variance commune 1. Soit (ain)i<i<n,neN Une

famille de réels telle que >/, a?n = 1 pour tout n € N*. On va montrer que si maxi<j<n |a;n| — 0,
’ - = n—oo

alors la suite des (S,) telle que S, = > i" | a; ,X; converge en loi vers la loi N'(0,1).

(a) Montrer que si (z;) et (z}) sont deux familles de nombres complexes tels que |z;| <1 et |2} <1

pour tout j, alors
n n n
-T2 =34
j=1 j=1 j=1

(b) Déterminer la fonction caractéristique de S,,. En déduire sa limite en utilisant I'inégalité précédente.

8. (**) Soit (X),, une suite de v.a.i.i.d. centrées de variance commune o > 0.

- : 1<
(a) Rappeler la limite en loi de S,, telle que S,, = m JZI X;.

(b) Décomposer la variable Sy, en fonction de S,, et d’'une variable aléatoire S/, indépendante de S,
et de méme loi.

(¢) En raisonnant par l’absurde, montrer que S,, ne converge pas en probabilité (on pourra montrer
que si ¢’était le cas, S;, convergerait aussi en probabilité et étudier sa limite).
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Feuille n° 5:

Estimation paramétrique

1. (*) Soit un n-échantillon (Xj,...,X,) de v.a.ii.d. suivant une loi de Poisson P(#), ot 6 > 0 est
inconnu. Déterminer un estimateur du maximum de vraisemblance de 6. Est-il biaisé? Convergent?
Efficace?

2. (**) Soit un n-échantillon (X1, ..., X,) de v.a.i.i.d. suivant une loi de densité fp(x) = (0+1) 2% To<r<1
par rapport a la mesure de Lebesgue sur R, ou 6 > 0 est inconnu. Déterminer I'estimateur du maxi-
mum de vraisemblance 6 de 6. Apres avoir calculé IE[log(X1)], montrer que 6 est convergent.

3. (*) On considere un n-échantillon (Xj,...,X;) dont la loi dépend d'un parametre § € R inconnu.
Soit f; et 6y deux estimateurs non biaisés de 6, tels que IE[62 + 62] < co. Pour a € [0,1] on considere
0 =ab; + (1 — )by et on notera R(01), R(02) et R(0) les risques quadratiques de 61, 02 et 0.

(a) On suppose que 61 et B, sont indépendants. Déterminer « en fonction de R(gl) et R(é\g), de telle
manieére que le R(#) soit minimum. Que vaut alors R(6)?

(b) Si 01 et B> ne sont pas indépendants, montrer que I'on a tout de méme

R(f) <2 M.
~ R(61) + R(02)

4. (**) On considere un n-échantillon (Xi,...,X,) de v.a.ii.d. suivant une loi E(N\), o A > 0 est
inconnu.

Déterminer l'estimateur A par maximum de vraisemblance de .
Déterminer la loi de Z;'l:1 Xj. En déduire que X est biaisé.

L'estimateur \ est-il convergent?

Etablir un TLC vérifié par 1/ X. En déduire un intervalle de confiance asymptotique de niveau
95% pour .

(e) En utilisant la Delta-Méthode déterminer un TLC vérifié par . En déduire que X est asympto-
tiquement efficace.

5. (**) On considere un n-échantillon (Xi,...,X,) de v.a.ii.d. suivant la loi binomiale B(k,p), ou
p €]0, 1] est inconnu alors que k € IN* est connu. On voudrait estimer la probabilité § = IP(X; = 1).

(a) Déterminer l'estimateur p par maximum de vraisemblance de p. Est-il biaisé? Efficace? Etablir
un TLC vérifié par p.
(b) En déduire un estimateur 6 de 6. Est-il convergent? Etablir un TLC vérifié par 6 pour p # 1 k.

En utilisant le lemme de Slutsky, déterminer un intervalle de confiance asymptotique de niveau

95% pour 6.

(c) Soit § = 1 > =1 Ix;=1. Montrer que f est non biaisé. Etablir un TLC vérifié par 6. Pour p

n

proche de 0, de 1 et de 1/k, quel estimateur préférer entre 9 et 07

6. (**) On considere un n-échantillon (Xi,...,X,) de v.a.iid. suivant la loi binomiale B(k,p), ou
p €]0, 1] et k € IN* sont inconnus. Obtenir explicitement l’estimateur par maximum de vraisemblance
de (p, k) est tres difficile, dans cet exercice on essaie autre chose.
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(a) Rappeler I'espérance m et la variance o de Xj.
(b) Déterminer des estimateurs naturels de m et o2. Sont-ils convergents?

(¢) En déduire des estimateurs convergents de p et de k.

7. (**) Soit ()", A, (IP9)®", 0 €]0, 0o[) un modele paramétrique tel que IPy admette pour densité par
rapport a la mesure de Lebesgue sur R:

1 1

f(x):@;

Ioc10,20[-

(a) Montrer que 'estimateur du maximum de vraisemblance pour ce modele n’est pas unique.

1
(b) Onobserve (X1,...,X,) dumodele statistique et on pose @(11) =3 max(Xq,...,Xp)et é\ﬁlz) = min(Xy,...,

Déterminer la loi de ces estimateurs et montrer qu’ils convergent. Sans rentrer dans les calculs,
donner un court raisonnement montrant qu’ils sont biaisés.

8. (**) Soit X une v.a. suivant une loi binomiale B(n, 3) olt n € N* est connu et A > 1 est inconnue.

On observe une réalisation de X est on estime A par un estimateur X = /)\\(X ).
(a) Montrer que si X est un estimateur sans biais de ), alors pour tout A € 1, o0,

n

AN T ) AR (A - 1) R =0

k=0

(b) En déduire qu'il n’existe pas d’estimateur )\ sans biais de \.

9. (**) Soit un n-échantillon de v.a.iid. (Xi,...,X,) de loi admettant la densité f par rapport a la
mesure de Lebesgue sur IR avec:

f@)=1—=0) -T_y0((z) + (1+0) Mg 91(z),
ou # €] — 1,1] est un parametre inconnu.

(a) Déterminer 'estimateur 6, du maximum de vraisemblance.
(b) Est-il sans biais? Converge-t-il? B, est-il un estimateur efficace?

(¢) Quelle est la loi limite de \/n(6, — 6)? En déduire un intervalle de confiance & 95%.

10. (**) On considere le modele paramétrique gaussien (IR, B(IR™), N'(m, 02)®", (m, o?) € IRx]0, +oo])
et (X1...,Xy) un échantillon observé de ce modele.

n

Z(X,- — X,,)?. En utilisant

~ _ _ 1 <&
(a) Soit l'estimateur T, = (X,,52), ott X,, = - g X; et 52 =
i=1

n—1
- i=1
le théoréme de Cochran (on considérera le sous-espace engendré par le vecteur de R", (1,...,1)),
montrer que cet estimateur est sans biais et que ses 2 composantes sont indépendantes. Est-il

efficace?

(b) Déterminer I'estimateur du maximum de vraisemblance de (m, 0?). Est-il biaisé? Efficace? Com-
parer avec ’estimateur précédent.

11. (*¥**) Soit ()", A, (IPg)®™, 0 €]0,00[) un modele paramétrique tel que Py admette pour densité
par rapport a la mesure de Lebesgue sur R:

flz) = Tec)p,641]-
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Montrer que 'estimateur du maximum de vraisemblance pour ce modele n’est pas unique.

On pose 5,(11) = max(Xy,...,X,) —let 57(12) = min(Xjy,...,X,). Pour chacun de ces estimateurs,
déterminer la loi, ’espérance et la variance. Sont-ils convergents? Efficaces?

Déterminer un estimateur de la forme 6, = agﬁll) +(1-a) @(12), avec a € [0,1], qui soit sans
biais.

Pour n = 2, déterminer cov (é\él), 552)). Le risque quadratique de 52 est-il inférieur a ceux de

et 5&1)? By est-il efficace?

0"

12. (***) Soit un n-échantillon (Xi,...,X,,) de v.a. telles que X suit une loi de Bernoulli de parameétre
1/2, et P(Xpp1 =1 Xp=1) =P(Xps1 =0 | X, =0) =p et P(Xpi1 =1 | Xp =0) = P(Xpp1 =
0] X,=1)=1—p pour n € IN*, avec p €]0, 1] un parametre inconnu.

(a)
(b)

Montrer que pour tout k € N*, Xy, £ B(1/2).

Déterminer 'estimateur de maximum de vraisemblance de p. Est-il biaisé?



13

Feuille n° 6:

Tests paramétriques

. (*) Dix coureurs de 1500 m testent si la prise d’un complément alimentaire non dopant améliore leurs
performances. Ils courrent un 1500 m sans le produit (ou plutét avec un placébo) et 2 jours apres
un autre 1500 m avec le produit. On note D1, ..., Do la différence entre leur temps de cours sans
et avec le complément alimentaire. On supposera que les D; sont des v.a.i.i.d. gaussiennes. On veut
tester entre Hy: le produit n’a pas d’effet, et Hy: le produit a un effet positif. Sur les 10 coureurs, on
a obtenu en moyenne 3s de moins entre les 2 courses avec un écart-type de 4s. Déterminer le résultat
du test avec un niveau de risque de 5%.

. (**) On a lancé 100 fois une piece de monnaie et obtenu 58 fois pile. Avec un niveau o = 0.05, tester
si la piece est équilibrée (on pourra utiliser d’abord une inégalité de Bienaymé-Tchebychev puis une
approximation gaussienne). Déterminer une formule permettant de calculer la fonction puissance du
test en fonction de p. Tester également si la piece est truquée toujours avec une erreur de premiere
espéce a = 0.05. Aboutit-on a la méme conclusion du test?

. (*) Une chaine des magasins décide d’adopter une nouvelle politique de gestion des stocks pour
I’ensemble de ses succursales. Auparavant, le bénéfice mensuel d’une succursale était en moyenne
égal a 300000 euros. Apres la mise en place de la nouvelle politique pour 100 succursales ”pilotes”,
on observe un bénéfice moyen de 305000 euros avec un écart-type de 20000 euros. En utilisant une
approximation gaussienne, peut-on conclure a 'efficacité de cette politique au niveau 5%? 1%? Et
que se passe-t-il si 'hypothese testée est que la politique n’a pas d’effet?

. (**) Dans le cas d’un échantillon (X1, --- , X,,) de v.a.i.i.d. deloi £(A), out A est inconnu. On consideére
les différents problemes de test suivants:

(1) Hp: A=1contre H; : X\ =2;
(2) Hyp: A=1contre H; : X\ > 1;
(3) Hp: A< 1contre Hy : \>1;
(4) Hy: A=1contre H; : A # 1.

(a) En utilisant le TLC donné exercice 4 du TD5, déterminer le test de Wald de niveau 5% (statistique
de test, région critique en fonction du niveau aw = 0.05) pour ces différents tests.

(b) Faire ensuite la méme chose avec le test du rapport de vraisemblance.

. (***) On suppose que le nombre de clients N attendant & la caisse d’un grand magasin & 11h00 du
matin peut étre modélisé par une loi de Poisson de parametre 8 > 0. On sait que pour les clients la
limite du supportable en attente est de voir au maximum 5 clients devant une caisse. La question
se pose de savoir si 'on doit augmenter ou nom le nombre de personnes travaillant aux caisses: ceci
conduit a un probleme de test sur 'opportunité d’embaucher.

(a) Pour la direction, peu désireuse d’embaucher, le probléme se pose de la maniére suivante:
Hy: 0 <5 contre Hy : 6 > 5 a tester avec le niveau 5%; ainsi, la direction veut que la probabilité
d’embaucher alors qu’il n’y en a pas besoin est controlée (moins de 5%) sans s’intéresser a autre
erreur possible (qui est de ne pas embaucher alors qu'il le fallait).

(b) Pour les syndicats, la position est inverse: on veut surtout éviter de ne pas embaucher alors qu’il
le fallait. Ils vont tabler sur le fait I'erreur de seconde espece du test soit de 5%.
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Dans les deux cas, sachant que 1’on dispose 1/ d’une seule observation de valeur 6; 2/ de 100 obser-
vations de moyenne 5.4, déterminer les résultats des tests du rapport de vraisemblance. On pourra
utiliser les quantiles d’ordre 0.95 d’une loi de Poisson de parametre 5 (9) et d’une loi de Poisson de
parametre 500 (537).



