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Perfect bipartite matching

◼ Definition 1: A matching M in a graph G=(V,E) is a set M Í E of 
pairwise non-adjacent edges.

◼ Definition 2: (i) A bipartite matching M  is a set of pairwise 
non-adjacent  edges in a bipartite graph B =(UÇ W,E), where U 
and W are the color classes of G. (ii) A perfect matching p(M) 
of graph B is a pairing of the set U to the set W which uses each 
element of U and each element of W once and only once. Such 
a matching covers all the vertices of the graph.

◼ Definition 3: A path P={v1,…,vm} is an alternating path with 
respect to the matching M, if (vi,vi+1) Î M then (vi+1,vi+2) Ï  M  for 
1 £ i £ m-2. An M – augmenting path begins and ends at
M – unsaturated vertices.
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The existence problem 

◼ P. Hall’s Theorem :Let (V,W) be the bipartition of B. Let G(X) be

all vertices which are adjacent two at least one vertex of X.
Then B has a complete matching of U into W iff |G(S)| ³ |S|
holds for every S Í U.

◼ Corollary : (The Marriage Theorem of Frobenius ). A bipartite

graph B:(U,W) has a perfect matching iff |U|=|W| and for each

X Í U, |X|£|G(X)|.

◼ Tutte’s Theorem : Let c0(G) be the number of odd components
of the graph G=(V,E). G has a perfect matching iff c0(G-S) £ |S|
for all S Í V(G).



Bipartite Matchings 5

The enumeration problem

Permanent : let A=(aij) be a n x n matrix. The permanent of A is                                    

per A = åsÎ Sn 
P

n

i=1
ai,s(i) ,

where the sum is computed over all permutations s of the numbers {1,…,n}. If A is the bi-adjacency matrix of the graph B,

each non-zero term corresponds to a perfect matching. Then we have

per A = F (G).

Pfaffian : let B be a 2n x 2n skew symmetric matrix. For each partition form
aa = sgn s bi1,j1

… binjn
. The Pfaffian is defined by

Pf B = åa aa

Lemma : If B is a skew symmetric matrix then det B = (Pf B)2 .
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Example

0 a 0 b

-a 0 c d

0 -c 0 e

-b -d -c 0

B 

Each non-zero term of the Pfaffian Pf N = b c + a e refers to a perfect matching.
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The maximum matching solution

The Ford – Fulkerson algorithm

Let G be a graph with bipartition (U,W) and let M be any arbitrary matching in G.

Suppose U1 and W1 are the sets of unmatched vertices. We aim to find an
-augmenting path, if any, connecting U1 to W1 . We have : (a) an arbitrary

matching at the begining, (b) augmenting path trees, (c ) the maximal matching.



Bipartite Matchings 8

The network flow solution (1)
A Network is a graph G(V,E) with a non-negative capacity function
C: E(G) ® Â+. A flow network is a flow network is a network with  

two addtionnal vertices s and t.  The objective is to determine
the maximum amount to carry in G from s to t. The problem of

Maximum matching may be solved with a complexity of O(|V|1/2.E).
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The network flow solution (2)

Residual network matching
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The duality Theorem

The  maximum matching problem : Let G be a bipartite graph 

(U,W) . A 0-1 vector x in  R 
E(G) 

is the incidence vector of a 
matching in G iff x(Ñ (v)) c 1 for every point v Î V(G). Hence the 
primal : Maximize 1 x

subject to A x c 1 , x s 0

The vertex cover problem : A 0-1 vector y is the incidence vector 
of a point cover iff it satisfies y u+ y v s 1 for every (uv) Î V(G). 
Hence the dual  :    Minimize 1 y

Subject to A T y s  1 , y s 0
Theorem : For any cover (u,v) and perfect matching M,
c(u,v) s w(M). Furthermore c(u,v) = w(M) iff every edge (i j)
in M  satisfies u i + v j = w ij. In this case M is a maximum

matching and (u,v) a minimum vertex cover.
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The equations of a growth model

(1- g) log v + d r = a + b(G,v,r)                           (1)

D log P + m D log v – e  DR = D log M – D log Y*  (2)

R = r + D P
e                                                                  

(3)

D log (D Pe ) = l (D log P – D log Pe)                    (4)

D log P = w log v + D P
e                                               

(5)
Note: D is the time derivative operator d/dt,  log is the Neperian logarithm,

the exogenous variables are underlined.

The endogenous variables are : P price of goods, Pe expected prices, R nominal interest rate, r real
interest rate, v transitory component of national product.
The exogenous variables are : G government expenditures, M nominal money supply, Y* normal
revenue.
The parameters in the list {a, d, e, g, l, m, w} are all taken positive, b(G,v,r) is a logaritm expression.
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Economic solutions

1 0 0 0 1

1 1 0 1 0

0 0 1 1 1

0 1 1 0 0

1 1 1 0 0

v P Pe R r

1

2

3

4

5

Interpretation in matching terms 

(a) is a wicksellian interpretation , (b) is a friedmanian interpretation and 
(c) is an extreme monetarist interpretation.
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Technical solutions

(a) Is the maximal matching, (b) is the minimal cost assignment
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Conclusion 1 : finding all minimum-cost 
perfect matchings in a bipartite graph

◼ The algorithm of Fukuda & Matsui (92’) uses the K th-best solution 
of assignment problems (AP) developed by Murty (68’) and Chegireddy & 
Hamacher (87’). The computational time is O(n(n+m)) and it requires 
O(n+m) memory storage for each additional matching. Their
recent algorithm (95’) requires O(e(n+m)+n 5/2) computational time and
O(nm) memory storage, where e is | F(G) |.

Method : first solve the AP by the Hungarian method and then
generate each additional perfect matching in a lexicographic
order. The procedure is based on a binary partitionning where the
enumeration problem can be partitionned into two subproblems. It 
generalizes the Murty’s algorithm for ranking the solutions of APs.

Uno (97’) proposed a new approach in two phases called trimming and 
balancing.
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Conclusion 2 : further results
- the DMS forecasting model -

Maximal matching
Largest circuit c
of 1415 circuits

Others  of the
scc maximum

Others G

|c|=3
4
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Technical solutions of DMS

Maximal matching Minimal cost assignment
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Other slides
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The solution of linear programming

◼ The explicit form of the continous program is 

where cij (= 1 or 0) is the cost of assigning the equation i to the variable j and 
where we have xij = 1 if equation 1 is assigned to variable j.



Bipartite Matchings 19

The assignment problem : LP solving

◼ The total variables is 13, the total constraints is 11

◼ There are 39 nonzeros

◼ A global optimal solution is found

◼ The objective value is 5

A square states for 1
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Determining Matchings
Author Algorithm Performance

Computational 
time

Memory 
storage

Chegireddy

/Hamacher

O((c+1) n3) O((c+1) n2

Fukuda / Matsui Binary

partitionning

O(c(n+m)+ 
n5/2)

O((c+1)n+
m)

Murty Kth – best

solution

O((c+1) n3) O(n.m)
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Delayed

Endogeneous

Variables

X <-i>

Endogeneous

Variables

X

Delayed

Exogeneous

Variables

Z <-j>

Exogeneous

Variables

Z

Introduction to the economic models  
What are the elements of such models ?


