Matching Theory and Economic Model Building

By André A. Keller, Univ. Haute Alsace (France)

Rostock, September 4-6, 2006

Contents

- Perfect bipartite matching
- Existence and counting problems
- Maximal matching and network solutions, and algorithms
- Application to economic model building
- Conclusion : enumeration problem and large size application

Perfect bipartite matching

- Definition 1: A matching M in a graph $G=(V, E)$ is a set M í E of pairwise non-adjacent edges.
- Definition 2: (i) A bipartite matching M is a set of pairwise non-adjacent edges in a bipartite graph $B=(U C ̧, W, E)$, where U and W are the color classes of G. (ii) A perfect matching $p(M)$ of graph B is a pairing of the set U to the set W which uses each element of U and each element of W once and only once. Such a matching covers all the vertices of the graph.
- Definition 3: A path $\mathrm{P}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right\}$ is an alternating path with respect to the matching M, if $\left(v_{i}, v_{i+1}\right)$ î M then $\left(v_{i+1}, v_{i+2}\right)$ ï M for $1 £ i £ m-2$. An M - augmenting path begins and ends at M - unsaturated vertices.

The existence problem

- P. Hall's Theorem :Let (V, W) be the bipartition of B. Let $G(X)$ be all vertices which are adjacent two at least one vertex of X. Then B has a complete matching of U into W iff $|G(S)|{ }^{3}|S|$ holds for every S í U.
- Corollary: (The Marriage Theorem of Frobenius). A bipartite graph $\mathrm{B}:(\mathrm{U}, \mathrm{W})$ has a perfect matching iff $|\mathrm{U}|=|\mathrm{W}|$ and for each X íU, $|X| £|G(X)|$.
- Tutte's Theorem : Let $c_{0}(G)$ be the number of odd components of the graph $G=(V, E)$. G has a perfect matching iff $c_{0}(G-S) £|S|$ for all S í V(G).

The enumeration problem

Permanent : let $A=\left(a_{i j}\right)$ be a $n \times n$ matrix. The permanent of A is

$$
\operatorname{per} A=a_{s i} S_{n} P_{i=1} a_{i, s(i)},
$$

where the sum is computed over all permutations s of the numbers $\{1, \ldots, n\}$. If A is the bi-adjacency matrix of the graph B, each non-zero term corresponds to a perfect matching. Then we have

$$
\operatorname{per} A=F(G) .
$$

Pfaffian : let B be a $2 n \times 2 n$ skew symmetric matrix. For each partition form $a_{a}=\operatorname{sgn} s b_{i_{1}, j_{1}} \ldots b_{i_{i n j}}$. The Pfaffian is defined by

$$
\operatorname{Pf} B=\dot{a}_{\mathrm{a}} \mathrm{a}_{\mathrm{a}}
$$

Lemma : If B is a skew symmetric matrix then $\operatorname{det} B=(P f B)^{2}$.

Example

Each non-zero term of the Pfaffian $\operatorname{Pf} \mathrm{N}=\mathrm{b} \mathrm{c}+\mathrm{a} \mathrm{e}$ refers to a perfect matching.

The maximum matching solution

The Ford - Fulkerson algorithm

(a)

(b)

Let G be a graph with bipartition (U, W) and let M be any arbitrary matching in G . Suppose U_{1} and W_{1} are the sets of unmatched vertices. We aim to find an [] -augmenting path, if any, connecting U_{1} to W_{1}. We have : (a) an arbitrary matching at the begining, (b) augmenting path trees, (c) the maximal matching.

The network flow solution (1)

A Network is a graph $G(V, E)$ with a non-negative capacity function $C: E(G){ }^{\circledR} \hat{A}_{+}$. A flow network is a flow network is a network with two addtionnal vertices \mathbf{s} and \mathbf{t}. The objective is to determine the maximum amount to carry in G from \mathbf{s} to \mathbf{t}. The problem of Maximum matching may be solved with a complexity of $\mathrm{O}\left(|\mathrm{V}|^{1 / 2} . \mathrm{E}\right)$.

(a)

The network flow solution (2)

The duality Theorem

The maximum matching problem : Let G be a bipartite graph
$(U, W) \cdot A ~ 0-1$ vector x in $R^{E(G)}$ is the incidence vector of a matching in G iff $x(\tilde{\mathrm{~N}}(\mathrm{v})) \mathrm{c} 1$ for every point v îV(G). Hence the primal: Maximize 1 x subject to $\mathrm{Axc} \mathbf{1}, \mathrm{x} \boldsymbol{\mathrm { s }} 0$

The vertex cover problem : A 0-1 vector y is the incidence vector of a point cover iff it satisfies $y_{u}+y_{v}$ s 1 for every (uv) îV(G). Hence the dual : Minimize $\mathbf{1}$ y Subject to A^{\top} ys $\mathbf{1}, \mathrm{ys} \mathbf{0}$
Theorem : For any cover (u, v) and perfect matching M, $c(u, v) s w(M)$. Furthermore $c(u, v)=w(M)$ iff every edge ($i j$) in M satisfies $u_{i}+v_{j}=W_{i j}$. In this case M is a maximum matching and (u, v) a minimum vertex cover.

The equations of a growth model

$(1-g) \log v+d r=a+b(\underline{G}, v, r)$
$D \log P+m D \log v-e D R=D \log \underline{M}-D \log \underline{Y}^{*}$ $R=r+D P^{e}$
$D \log \left(D P^{e}\right)=I\left(D \log P-D \log P^{e}\right)$
$D \log P=w \log v+D P^{e}$
(5)

Note: \mathbf{D} is the time derivative operator $\mathrm{d} / \mathrm{dt}, \boldsymbol{l o g}$ is the Neperian logarithm, the exogenous variables are underlined.

The endogenous variables are : P price of goods, P^{e} expected prices, R nominal interest rate, r real interest rate, v transitory component of national product.
The exogenous variables are : G government expenditures, M nominal money supply, Y^{*} normal revenue.
The parameters in the list $\{a, d, e, g, l, m, w\}$ are all taken positive, $b(G, v, r)$ is a logaritm expression.

Economic solutions

Interpretation in matching terms

(a) is a wicksellian interpretation, (b) is a friedmanian interpretation and
(c) is an extreme monetarist interpretation.

Technical solutions

(a) Is the maximal matching, (b) is the minimal cost assignment

Conclusion 1 : finding all minimum-cost perfect matchings in a bipartite graph

- The algorithm of Fukuda \& Matsui (92') uses the K th-best solution of assignment problems (AP) developed by Murty (68^{\prime}) and Chegireddy \& Hamacher (87). The computational time is $\mathrm{O}(\mathrm{n}(\mathrm{n}+\mathrm{m})$) and it requires $\mathrm{O}(\mathrm{n}+\mathrm{m})$ memory storage for each additional matching. Their recent algorithm (95') requires $\mathrm{O}\left(\mathrm{e}(\mathrm{n}+\mathrm{m})+\mathrm{n}^{5 / 2}\right)$ computational time and $\mathrm{O}(\mathrm{nm})$ memory storage, where e is $|\mathrm{F}(\mathrm{G})|$.

Method: first solve the AP by the Hungarian method and then generate each additional perfect matching in a lexicographic order. The procedure is based on a binary partitionning where the enumeration problem can be partitionned into two subproblems. It generalizes the Murty's algorithm for ranking the solutions of APs.

Uno (97') proposed a new approach in two phases called trimming and balancing.

Conclusion 2 : further results - the DMS forecasting model -

 Largest circuit c

B: $\langle 305,164\rangle$

$$
\mathrm{G}:<223,82>
$$

Others G

Technical solutions of DMS

Other slides

The solution of linear programming

- The explicit form of the continous program is

$$
\begin{aligned}
\text { Maximize } & \sum_{i} \sum_{j} c_{i j} x_{i j}, \\
\text { Subject to: } & \sum_{j} x_{i j} \leq 1, \\
& \sum_{i} x_{i j} \leq 1, \\
& 0 \leq x_{i j} \leq 1 .
\end{aligned}
$$

where $c_{i j}(=1$ or 0$)$ is the cost of assigning the equation i to the variable j and where we have $x_{i j}=1$ if equation 1 is assigned to variable j.

The assignment problem : LP solving

- The total variables is 13 , the total constraints is 11
- There are 39 nonzeros
- A global optimal solution is found
- The objective value is 5

A square states for 1

Determining Matchings

Algorithm Performance

Computational	Memory storage
time	stor

$$
O\left((c+1) n^{3}\right) \quad O\left((c+1) n^{2}\right.
$$

Binary $\quad O(c(n+m)+\quad O((c+1) n+$ partitionning $n^{5 / 2}$) m)
K Khh-best $\quad O\left((c+1) n^{3}\right) \quad O(n . m)$

solution

Introduction to the economic models
 What are the elements of such models?

The normalized form of the model :
$X_{i}=f_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}, Z_{0}, Z_{1}, \ldots, Z_{m}\right), i=1, n$.

