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Abstract

While building and by solving an economic model, the economists are confronted
with the problem of knowing how to assign the variables of the model to the equa-
tions. By which equation does have one to calculate each endogenous variable of
the model? Among the whole set of the possible and numerous solutions, only few
of them will be eligible for an economic interpretation. In this study, we will show
that the same economic model may have several ”readings” according to economic
theory or use for an economic policy purpose. Just take one familiar example : an
empirical model for forecasting will have in the short run a ”keynesian reading”
with a production determination by demand components,while it will have ”a clas-
sic reading” with a supply driven explanation, in the long run. The objective of this
study is to deal with matching problem using the concepts and algorithms of graph
theory [LoPl86]. Within this framework, one can look at the existence of matchings
(Tutte’s theorem), at counting the matchings(Ryser’s formula) and at finding all
the perfect matchings (Fukuda and Matsui’s algorithm). Two types of applications
are proposed for an illustration. One application is an economic growth model of
small size, with 5 equations [Ve81]. The other application is a larger size empirical
model, with 82 equations [Br97]. The computations have been carried out using
the softwares Mathematica 5.1 and Lindo, as well as other Fortran 77 and C++
source programs. The computer software Mathematicar 5.1 contains specialized
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packages such as DecisionAnalysis‘Combinatorica and ‘GraphPlot.

Keywords: matching theory, bipartite graph, maximal matching, perfect
matching, counting, enumeration, algorithm, macroeconomic model building.

This study 2 provides an useful insight into the economic model building
and analysis. This knowledge is essential for economic model building. The in-
terest of such an approach is shown using two types of macroeconomic models.
Three major but simple proposals are given in this paper. Firstly, an exhaus-
tive list of perfect matchings for a small theoretical economic model. Secondly
the determination of the maximal and minimal network solutions for a large
empirical model. Thirdly, an improved embedding of the graphs is proposed.
The computer calculations have been done using the software Mathematicar

5.1 and its specialized packages DecisionAnalysis‘Combinatorica, ‘GraphPlot
at http://library.wolfram.com/infocenter/. Other computer programs
has been used to enumerate the circuits and the softwares LINDO [Sc97] for
solving linear programs.

1 Introduction to the matching problem

1.1 Presentation of the model

The macrodynamic model of Vedel [Ve81] is an attempt to conciliate funda-
mental elements of the macroeconomic theory : the standard IS - LM model
of Hicks, the natural unemployment theory of Friedman and Phelps, the the-
ory of inflation of Cagan, the equation of Fisher and the analysis of Wicksell.
The equations have been rewritten in a more readable form. The variables
are continuous and derivable functions of time and parameters are all positive
with γ, µ ∈ [0, 1]. A doted variable states for its first time derivative and log
is the logarithm with base e. We have

Y = Y γ Ỹ (1−γ) eα−δr + G (1.1)

M

P
= k Y µ Ỹ (1−µ) e−εr (1.2)

1 Email: andre.keller@uha.fr
2 Presented at the Conference “Optimal Discrete Structures and Algorithms”, Universität
Rostock, Institut für Mathematik, Institut für Informatik, September 04-6, 2006.



3

R = r +
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− Ṗ e

P e
) (1.4)

Ṗ
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The endogenous variables are : P the price of goods, P e the expected price,
R the nominal interest rate, r the real interest rate, Y the effective national
income, Ȳ the expected normal income. The exogenous variables are : G the
government expenditures and M the nominal money supply. Equation 1.1 is
the equilibrium condition on the market of goods : the private demand de-
pends on an geometric average between the current and the expected income,
as well as on real interest rates. In equation 1.2 the real money demand has
the same set of explanatory variables (except the government expenditures).
Equation 1.3 is the equation of Fisher 3 , where the real and nominal rates
are related. The equation 1.4 describes the formation of price expectation
following Cagan 4 . Equation 1.5 expresses the Phillips curve with the natural
unemployment of Friedman and Phelps 5 .

1.2 The assignment problem

This model may be transformed [Ve81] introducing the variable Y/Ỹ which is
the transitory component of the national product and the two parameters of
budgetary policy z = 1+G/Y γ Ỹ 1− γ×eα− δ r and b = log z 6 . All variables
are functions of time. The model can then be rewritten as

(1− γ) log v + δ r = α + b

ṗ

p
+ µ

v̇

v
− ε ∆R =

Ṁ

M
−

˜̇Y

Ỹ

3 I. Fisher, The Theory of Interest, in A.M. Kelley, “Reprints of Economic Classics”, New-
York (1961).
4 P. Cagan, The Monetary Dynamic of Hyperinflation, in M. Friedman (editor), “Studies
in the Quantity Theory of Money”, Chicago, Chicago University Press (1956).
5 M. Friedman, the role of monetary policy, American Economic Review, 58, (1968) 193–
194 ; E. S. Phelps and al., “Microeconomic Foundations of Employment and Inflation”,
New-York, Norton 1975.
6 These parameters are comparable to the ratio of public to private expenditures.
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Fig. 1.1. Equations and variables
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The relation between the equations 1 to 5 and the variables {v, P, P e, R, r}
is shown in matrix M = (mij) of the Fig.1.1, where the rows are the equations
and the columns j the variables. If mij = 1 the variable j is a variable of
the equation i. When solving this model , the economist will be confronted
to an assignment problem : how the endogenous variables will be calculated
? Is it the unique solution for associating the variables and the equations ?
These questions that refer to the normalization in model building are relative
to perfect matchings in a bipartite graph.

2 Perfect bipartite matching

Matching is a graph optimization problem. Let us introduce some definitions
of graph theory about matchings on bipartite graphs.

Definition 2.1 . A graph G = (U
⋃

W, E) is bipartite if its set of vertices
can be partitioned into two sets U and W such that every edge in U has one
endpoint in W. The sets U and W are the color classes of G and (U,W ) a
bipartition 7 of G.

7 In a k-partite graph G(V,E), the set V (G) can be partitioned into the k partite sets
V1, V2, . . . , Vk such that any edge (uv) belongs to different partite sets.
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Definition 2.2 1. A bipartite matching M is a set of pairwise non-adjacent
edges in a bipartite graph G = (U

⋃
W, E). That is, M ⊆ E(G) such that

(e1, e2) ∈M, e1 = (i1j1), e2 = (i2j2) and i1 = i2 ⇔ j1 = j2.
2. A perfect (or complete) matching p(M) of the bipartite graph G is a pairing
of the set U to the set W which uses each element of U and each element of
W once and only once. Such a matching covers all the vertices of the graph.

Proposition 2.3 . Every matching consists of at most n
2

edges, where n
denotes the order of the graph. Every graph has a maximum matching, but
not all graphs have a perfect matching whose edge number is exactly n

2
.

3 The existence problem and criteria

3.1 The existence problem

Frobenius’ Theorem characterizes those bipartite graphs that have a perfect
matching. Hall’s Theorem characterizes the bipartite graph which have a
matching of U into W. König ’s Theorem gives a formula for the matching
number ν(G) which is the size of the maximum matching, when a graph has
no perfect matching. For this problem there is initially n! possible pairings.
According to Hall’s Theorem, a condition for the existence of a matching is
that every subset of the set U has enough neighbors in the set W 8 .

Theorem 3.1 .(P. Hall’s Theorem 1935). Let G = (U
⋃

W, E) be a bipartite
graph . Let X be any set in V(G) and |Γ(X)| be all vertices which are adjacent
to at least one vertex of X 9 . Then G has a complete matching of U into W
if and only if |Γ(X)| ≥ |X| holds for every X ⊆ U .

Proof of Theorem 3.1 . The demonstration 10 is done by induction on the
cardinality |U |. When |U | = 0or 1, the theorem holds immediately. Suppose
that |U | ≥ 2 and |Γ(X)| > |X|, for all X ⊂ U . Let (uw) be an edge of
G. Let G′ = G − u − w be a bipartite graph with color classes U’ and
W’. For any X ′ ⊆ U ′ we have |ΓG′(X ′)| ≥ |ΓG(X)| − 1 > |X ′| − 1 so
that |ΓG′(X ′)| ≥ |X ′| in G’. Then there is a complete matching from U’ to
W’, which along with (u,w) forms a complete matching from U to W. Now
suppose that |Γ(X)| = |X|. Let G1 be a subgraph induced by X

⋃
Γ(X) and

8 It is not an efficient algorithm since the Hall’s condition would require to look at 2n

subsets.
9 ΓG(X) denotes the set of neighbors of X in a graph G.
10 The proof is given by M. Aigner and G.M. Ziegler, “Proofs from the Book”, second
edition, Springer Verlag, Berlin, 2001.
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G2 = G − X − Γ(X). Let Ui, Wi (i = 1, 2) be the color classes. One
can easily verify that G1 and G2 satisfy the matching conditions. The two
matchings together form a complete matching from U to W. 2

Corollary 3.2 .(The Marriage Theorem of Frobenius). A bipartite graph G=
(U,W) has a perfect matching if and only if |U | = |W | and for each X ⊆ U ,
|X| ≤ |Γ(X)|.

Definition 3.3 . An alternating path has edges that are alternately free (or
unmatched) such as e ∈ E−M and matched such as e ∈M. An augmenting
path starts at an unmatched vertex and ends at another free vertex.

Theorem 3.4 .(Berge’s Theorem 1957). Let M be a matching in a graph G.
Then M is a maximum matching if and only if there exists no augmenting
alternating path in G relative to M.

Proof of Theorem 3.4.(⇒) If there exists an augmenting alternating path
P we would obtain a new matching M′ = (M

⋃
P )− (M

⋂
P ) of cardinality

|M|+ 1.
(⇐) Let M′ be a maximum matching. There cannot be an augmenting alter-
nating path. Hence the partial graph H(V,M′ ⊕M) has no odd component
whose edges are alternately in M and in M′. Then we have |M −M′| =
|M′ −M|. Hence the equality |M| = |M′| proves that M is a maximum
matching. 2

Tutte’s Theorem generalize the marriage Theorem to the characterization
of perfect matchings. The condition that the cardinality of every subsets |X|
exceeds the number of odd connected component in the subgraph produced
by V \X.

Theorem 3.5 .(Tutte’s Theorem, Lovász 11 ). A graph G has a perfect match-
ing p(M) if and only the number of odd components c0(G − X) for all

X ⊆ V (G) does not exceed the cardinality of X. Then we have

c0(G−X) ≤| X |, for all X ⊆ V (G).

Proof of Theorem 3.5.(⇒) Consider a graph with a perfect matching. Let
X be an arbitrary subset of V (= U

⋃
W ). Consider an arbitrary odd compo-

nent C in G− X. Then on edge at least in C must be matched to a vertex in
X. Thus we have c0(G−X) ≤| X | .

11 Honsberger,R and R. Lovácz, Proof of a Theorem of Tutte, in Mathematical Gems II,
Math. Assoc. Amer. (1976) 147-157.
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(⇐) (i) Suppose a graph G having a perfect matching [LoPl86] p(M) and
X ⊆ G. Every odd-component of G −X must have one edge of p(M) to X
but every vertex in X have at most one edge. Then G −X has at most |X|
odd components.
(ii) Suppose a graph G of even order, having no perfect matching. Consider
the edge saturated graph G’ by adding edges as long as we have no per-
fect matching. Let S’ the set of vertices adjacent to every vertex of G’ and
H ′ = V (G)− S ′. Moreover H ′ = G′

1

⋃
. . . G′

k where the G′
i’s are edge-disjoint

complete subgraph and k = |S ′| + 2. Then G’-S’ has more than |S ′| odd
components. 2

Consider now our application to economic models with the sets Y and X
of equations and variables respectively. Let Yi be the set of equations that cal-
culates the ith variable. Then the marriage theorem states that each variable
can be calculated by one equation iff the collection of sets {Yi} satisfies the
following marriage condition : for any subset of variables, the number of pos-
sible assignments to the equations must be at least as large as its cardinality.

Theorem 3.6 .(König’s Minimax Theorem 1931).The maximum size of a
matching in a bipartite graph G is the minimum cardinality of a vertex cover
in G.

Proof of Theorem 3.6 . Let U ⊆ V be a vertex cover of E, in which
every edge of G is incident with a vertex in U. Let M in G be a matching of
maximum cardinality. Let (ab) not be in M. It contains an edge (a’b’) with
a = a’ or b = b′. Assume that a = a’. If a is unmatched and b = b’ then (ab)is
alternating path P and so the end of (a′b′) ∈ M chosen for U was the vertex
b’ = b. If a’ = a is not in U, then b′ ∈ U and some alternating path P ends in
b. There is also an alternating path P ending in b, either P := P b (if b ∈ P )
or P’ = P b’ a’ b. By maximality of M, P’ is not an augmenting path. So b
must be matched and was chosen for U from the edge of M containing it. 2

3.2 A circular implication of equivalent Theorems

Let us demonstrate the circular implication

König ⇒ Hall ⇒ Frobenius ⇒ König
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Let ν(G) be the matching number and τ(G) be the vertex covering
number 12 .
Regarding the implication König ⇒ Hall the necessity proof is obvious. For
the sufficiency condition assume that for all X ⊆ A where A is a vertex cover
we have |Γ(X)| ≥ |X|—. Let C be a cover vertex such that |C||| = τ(G) ≤ |A|.
Assume that— |C| < |A|. Then we have

|Γ(A− C)| > |A− C| = |A| − |A
⋂
C| > |B

⋂
C|.

The fact that an edge exists from A - C to B - Ccontradicts that C is a cover
vertex.
Concerning the implication Hall ⇒ Frobenius it appears that Frobenius
Theorem is a special case of Hall’s Theorem .
About the implication Frobenius ⇒ König the fact that ν(G) ≤ τ(G) is
obvious for a matching in order to prove the necessary condition. Let C be a
vertex cover of G of size τ(G). To show that |C| ≤ ν(G) we need to find a
matching M such as |C| = |M|. The matching M is formed by the union of
two sub-matchingsM1 from A - C into B - C andM2 from B - C into A - C. For
every X ⊆ A

⋂
C we have Γ(X) ≥ |X|. This implies |A

⋂
C| ≤ |B−C|. Then

let us add dummy vertices to |A
⋂
C| until its size equals |B − C|. Connect

all dummy vertices to all vertices in |B − C| and verify that the Frobenius
conditions are satisfied.

3.3 Criteria for a perfect matching

Definition 3.7 . Let G a bipartite graph with bipartition (U,W). For X ⊆ U
define the deficiency of X by def(X) = |X| − |Γ(X)|, where |Γ(X)| denotes
all vertices which are adjacent to at least one element of X. Since def(∅) = 0,
we have def(G) ≥ 0.

The Theorem 3.8 is a consequence of the König or P. Hall Theorems
[LoPl86].

Theorem 3.8 . The matching number of a bipartite graph G is |U |−|def(G)|.

12 The matching number is the size of the largest matching. The vertex covering number
equals the cardinality of the smallest vertex cover in which each edge of G has at least one
end-vertex .
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Permanent

Definition 3.9 . Let G be a bipartite graph with bipartition sets (U,W ) of
the same size |U | = |W | = n where U = {u1, . . . , un} and W = {w1, ..., wn}.
The bi-adjacency matrix A = (aij) is defined by

aij :=

{
1 if (uiwj) ∈ E(G),

0 otherwise.

The aij denote the number of edges connecting ui to wj.

Let A = (aij) be a n× n matrix. Define the permanent of A by

per A =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where the sum is computed over all permutations σ of the numbers {1, . . . , n}.
The only difference with the Leibniz formula of the determinant is that all
terms have the same sign 13 . This formula 14 per contains n ! summands.
If A is the bi-adjacency matrix, each non-zero term corresponds to a perfect
matching in the bipartite graph G. Then we have

per A = Φ(G),

where Φ(G) denotes the number of perfect matchings in G.

13 The determinant is defined by

detA =
∑

σ∈Sn

sgn(σ).
n∏

i=1

ai,σ(i),

where sgn(σ) is -1 if σ is an odd number of inversions, and +1 otherwise.
14 We also have the Ryser formula

per A = (−1)n
∑

s ⊆{1,...,n}

(−1)|s|
∏
j ∈s

ai,j ,

where the sum is over all the subsets of {1, . . . , n} and |s| the number of elements in s .
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Pfaffian

Let B be a 2n × 2n skew symmetric matrix 15 . For each partition α =
{{i1, j1},. . . ,{in, jn}} of the set {1, ..., 2n} into pairs and form the following
expression

bα = sgn

 1 2 . . . 2n− 1 2n

i1 j1 . . . in jn

 bi1j1 . . . binjn ,

where sgn(σ) is -1 if σ has an odd number of inversions , and +1 otherwise.
The Pfaffian of matrix B is then define by

pf B =
∑

α

bα

.

Lemma 3.10 .If B is a skew symmetric matrix, then det B = pf(B)2. The
determinant of a real skew-symmetric matrix is then always non negative. 16

Example 3.11 . For example, with the 4× 4 matrix

B =


0 b12 b13 b14

−b12 0 b23 b24

−b13 −b23 0 b34

−b14 −b24 −b34 0


The Pfaffian of a skew-symmetric matrix B is then defined by

pf B =
∑
M

p(M),

where the sum ranges over all perfect matchings M. In the example above,we
have pf B = b14 b23 − b13 b24 + b12 b34.

15 B skew symmetric matrix is a square matrix B whose transpose is its negative. It
then satisfies BT = −B. The determinant equals (−1)ndet B. According to the Jacobi’s
Theorem, the determinant vanishes when n is odd.
16 This is a consequence of the Cayley’s Theorem (1857). Let A be a matrix of even di-
mension which skew-symmetric after deletion of its rth row and column. Let R and C be
two matrices formed by changing he rth row and column. Then the Theorem states that
det A = pf R× pf C.
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Fig. 3.1. Perfect matchings of an undirected graph

Example 3.12 . Given the following matrix B

B =


0 a 0 b

−a 0 c d

0 −c 0 e

−b −d −e 0


Each non-zero term of the Pfaffian pf B = b c+ a e refers to a perfect

matching. The matchings are shown in heavy gray edges in Fig.3.1.

4 The counting problem

4.1 Estimates of the number Φ(G)

Let us have some estimation of the number of perfect matchings 17 .

Theorem 4.1 . Given a k-connected graph G containing at least one perfect
matching. Then the number of perfect matchings in G is at least the double
factorial number

k !! =

(k−2)/2∏
i=0

(k − 2 i).

17 Lovász and Plummer [LoPl86] give more formulas, proofs and results for any types of
graph pp. 345–349.
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4.2 Permanent and Pfaffian

The following inequality may be useful for an estimation of the permanent

per A ≤ (r1!)
1/r1 . . . (rn!)1/rn ,

where r1 . . . rn are the row sums.

Definition 4.2 . Assign orientations to the edges of a graph G to have the
directed graph G = (aij)n×n. The associated Tutte matrix is defined by the
following skew symmetric adjacency matrix

As(G)ij =


1 if edge (uiuj) ∈ E(G),

−1 if edge (ujui) ∈ E(G),

0 otherwise.

When we have

B =


0 −1 0 1

1 0 1 −1

0 −1 0 −1

−1 1 1 0


then pf B = 2.

4.3 A probabilistic estimate

A probabilistic method is presented in Lovász and Plummer [LoPl86] for
counting perfect matchings on a graph.

Theorem 4.3 . Let G be a graph. Let G be a random orientation of G
obtained after orienting each edge independently with equal probability. Let
As(G) be the skew symmetric adjacency matrix. Then the matching number
Φ(G) is the expected value of det As(G) 18 .

Example 4.4 A Monte Carlo type algorithm is suggested by Lovász and
Plummer [LoPl86] . The orientation of edges is done randomly to calculate
the matching number Φ(G). In this study, the number of experiments has
been fixed at N = 10000. Then N random orientations of G : G1, . . . , GN are

18 A proof of the Theorem 4.3 is in Lovász and Plummer [LoPl86], page 330
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Fig. 4.1. Convergence of estimates of Φ(G) and σΦ(G)

generated. The estimate of Φ(G) is

Ψ(G) =
1

N

N∑
k=1

det As(G
k).

As N is a large number, we expect that Ψ(G) will be close to the matching
number with a large probability. A Ψ(G) = 4 has been obtained. The Fig.4.1
shows a rapid convergence of the mean and standard error evaluations when
N is varying from 10 to 100.

The application of the method of variables (section 7) allows an identifi-
cation of these four matchings. We have

M1 = {(1a), (2c), (3e), (4b), (5d)}
M2 = {(1b), (2a), (3e), (4c), (5d)}
M3 = {(1a), (2c), (3d), (4b), (5e)}
M4 = {(1b), (2a), (3d), (4c), (5e)}

The exhaustive list of perfect matchings is shown in Fig.4.2.

5 Maximal matching and network flow solutions

Two solutions are considered here : the maximal matching and the minimal
cost solutions.
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Fig. 4.2. All perfect matchings

5.1 The maximal matching solution

Given a bipartite graph G = (U
⋃

W, E) A matching matches each vertex in
U to one in W . A polynomial-time matching algorithm follows the statement
of Berge’s Theorem : a matching is maximum if and only if it contains no aug-
menting path. The algorithm starts with an arbitrary matching. This match-
ing may then be improved by finding, if any, an M-augmenting path that
starts and ends at an unmatched vertex. ThenM is replaced with the symmet-
ric difference (M−P )

⋃
(P−M). The matching is maximum when it contains

no augmenting path. How to find a maximum matching with as many edges
as possible ? Let us take an arbitrary matching in G(V,E) with bipartition
(U,W) say M = {(u1w1), (u3w3)}. Then start at an unmatched vertex and
look for a path P where edges from E \M and edges from M alternate. Here
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Example 5.1

Fig. 5.1. Augmented matching

we clearly have M = {(u4w3), (u3w3), (u3w2)}. The symmetric difference 19

of M with P produces the new matching M′ = {{u1, w1}, {u3, w2}, {u4, w3}}
with augmented cardinality |M| = |M|+ 1. The result is shown in Fig.5.1.

The calculations are described in the algorithm 5.1 for finding bipartite
matchings 20 .

5.2 The network flow solution

Definition 5.2 . Given an undirected graph G(V,E) with bipartition (U,W),
a network flow (G, c, s, t) introduces two additional vertices. The source s
is connected to every vertices of set U, and a sink t which is connected to all
vertices of set W. A non-negative capacity function is c : E(G) 7→ R+.

The objective of the maximal flow problem is to determine the maximum
amount to carry in G from s to t. A pseudoflow is a function f : E(G) 7→ R+

in the network (G, c, s, t) if it satisfies the capacity constraint (i)and the flow
antisymmetric constraint (ii).

Definition 5.3 . The value of a flow is represented by the expression

val(f) =
∑

u

f(s, u) −
∑

u

f(u, s).

Definition 5.4 .An excess function is such that ef : V (G) 7→ R. The net

19 The symmetric difference is calculated by M
⋃
P or M

⋂
P according to the second

Morgan law.
20 adapted from [PaSt82] page 224.
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Algorithm 5.1 : BIPARTITE MATCHING ALGORITHM
input: a bipartite graph G(V,E) with partition (U,W)
output: a maximum matching M represented by the array mate[ ]
label[stage]
begin

for all u ∈ U
⋃

W do mate[u] := 0; \\ initialization
begin

for all u ∈ U
⋃

W do:
expoxed[v] := 0;
A := ∅; \\ construction of the auxiliary graph
for all [u, w] ∈ E do:
if mate[w] == 0 then exposed[u] := w else:

if mate[w] 6= u then A := A
⋃

(u, mate[w])
Q := ∅;
for all u ∈ U do if mate[u] == 0 then:

Q := Q
⋃
{u}, label[u] := 0

while Q 6= ∅ do:
begin
let w be a vertex in Q;
remove w from Q;

if exposed[u] 6= O then augment[u], go to [stage]
else

for all unlabeled u’ such that (u, u′) ∈ A
label[u’] := u, Q := Q

⋃
{u′};

end
end

end
procedure augment[u]

if label[u] = 0 then:
mate[u] := exposed[u], mate[exposed[u]] := u;
else begin:
exposed[label[u]] := mate[u];
mate[u] := exposed[u];
mate[exposed[u]] := u;
augment(label[u]);

end
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flow into v is defined by

ef (v) =
∑
u∈V

f(u, v) −
∑
w∈V

f(u, v).

(i) f(u, w) ≤ c(u, w) for all (uw) in E(G)

(ii) f(u, w) = −f(w, u)

The conservation flow constraint states that

ef (v) = 0 or
∑

u

f(u, v) =
∑

w

f(v, w), for all v, w ∈ V (G)

.

Definition 5.5 .The residual flow graph is Gf = (V, Ef ) where Ef = {(v, w) ∈
E|cj(v, w) > 0}. It may contain two edges
(i) an edge (ij) with weight c(i, j)− f(i, j) if c(i, j)− f(i, j) > 0
(ii) an edge (ji) with weight f(i,j) if f(i, j) > 0.

V̄ = {s, t}
⋃

V

Ē = {s → u|u ∈ U}
⋃

{w → t|w ∈ W}}
⋃
{u →→ w|u− w in G}

The problem of a maximum matching in a bipartite graph G = (V, E) may
be solved by a network flow with a complexity of O(|V |1/2 × |E|) [HoKa75]
21 . A cut splits the vertices into two sets S and T, such that s ∈ S and t ∈ T .
There are 2|V |−2 possible cuts. The capacity of a cut (S,T) is

c(S, T ) =
∑

(uv)∈Ec(u,v)

, ∀ u ∈ S and v ∈ T

.

Lemma 5.6 .In every network (G, c, s, t) a maximum exists.

Proof [LoPl86] . Each flow is a point of Rm where m is the size of the graph.
The set of points being compact and the function val(f) being a continuous

21 The big O notation refers to the following property : O(g(n)) = {f(n) : ∃(c,N) ∈
R∗+|0 ≤ f(n) ≤ c.g(n),∀n ≥ N}. Thus any linear function as f(n) =

∑n
i=1

i is in O(n2),
since

f(n) =
n(n + 1)

2
< n2 + n ≤ 2 n2 < c n2, ∀n.

.
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function of m variables, the network reaches its maximum on the set by the
Bolzano-Weierstrass Theorem. 2

Menger’s Theorem is an essential result about connectivity in finite undi-
rected graphs. Let us present the edge-connectivity version of the Theorem.
It states that the size of the minimum edge cut for two non adjacent vertices u
and w is equal to the maximum number of pairwise vertex-independent paths
from u to w.

Theorem 5.7 .(Menger’s Theorem 1927). Let G be an undirected graph with
two distinguished vertices s and t. Then the minimum size of any s-t separating
set of edges is equal to the maximum number of edge-disjoint s-t paths.

Proofs are given by Lovász and Plummer [LoPl86]. The max-flow min-cut
Theorem is a generalization which states that the maximal amount of a flow
is equal to the capacity of a minimal cut.

Theorem 5.8 .(Max-flow min-cut Theorem). If G is a digraph with source s
and sink t, the maximum value of any s-t flow equals the minimum capacity
of any s-t cut 22 .

Lovász and Plummer [LoPl86] prove this theorem using two lemmas : the
first lemma states that in every network (G, c, s, t) a maximum flow exists
and the second that if f is any flow in G and c is a s-t cut the value of flow
Val(f) is less or equal to capacity of C Cap(C). Then a flow f in a network
is a maximum flow iff an f -augmenting path does not exists.

Example 5.9 One example is an application of the flow theory to matching
problems. Fig.5.2 shows the original directed graph and the residual graph.
The original graph has been constructed, using the undirected graph G whose
bipartition is (U,W), adding the source-vertex s and the sink-vertex t, and
orienting the edges from s to t. The edges joining s to the u′is have a capacity
of 1. The edges joining the w′

js to t have also a capacity of 1. In the residual
graph, there is no directed path from s to t, since it would mean that some
flow could carry more. Then we could not have a maximum. The source - sink
partition is S = {s, u1, u2, u3, u4, u5, w1, w2, w3, w4} and T = {t}. All edges
from S to T are saturated as they carry the maximum flow and all edges from
T to S carry no flow. The maximum flow from s to t will correspond to a
maximum matching. Indeed it will find a largest set of vertex-disjoint paths

22 The König’ s theorem and Hall’s theorem can be derived from this max-flow min-cut
Theorem.
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Fig. 5.2. Original and residual flow graph

which consist od disjoint edges from G. Finally the maximum matching for
that example is

M = {(u1w3), (u2w2), (u3w1), (u4w4)}

6 The combinatorial algorithms

We will examine some major algorithms and methods together with simple
and economic examples : the Ford - Fulkerson algorithm, the Edmonds - Karp
algorithm, the hungarian method and linear programming.

6.1 The Ford - Fulkerson algorithm

Let G(U
⋃

W, E) be a bipartite graph and let M be any matching in G.
Suppose U1 and W1 are the sets of unmatched (or exposed) vertices. We aim
to find an M-augmenting path 23 , if any, connecting U1 to W1. We consider
the set of vertices in U accessible from U1 on an M-alternating set. The
following algorithm 24 uses the graph form of G. 25

23 A path P = {v1, . . . , vm} is an alternating path with respect to the matching M if
(vivi+1) ∈M iff (vi+1vi+2) /∈M for 1 ≤ i ≤ m− 2.
24 adapted from [GrYe03] page 1109.
25 Another algorithm proposes to use the matrix form. Such algorithm consists in two
phases the labeling and the flipping phase.
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Algorithm 6.1 : FORD-FULKERSON ALGORITHM
input: a bipartite graph G(U

⋃
W, E) and any arbitrary matching M

output: a maximum matching M
begin
M := ∅;
done := False;

while not done do:
let free; \\ the set of unmatched vertices
SU := U

⋂
free;

seen := ∅;
stillooking := True;

while stillooking do : \\ for an augmenting path
SW := {w |w /∈ seen and (uw) ∈ E, u ∈ SU};

if SW

⋂
free 6= ∅ then M := M

⊕
P ;

\\ an augmenting path exists
\\ constructing an augmenting path P

stillooking := False;
else \\ continue looking for an augmenting path

seen := seen
⋃

SW ;
SU := {u|(w, u) ∈M, w ∈ SW};

if SU == ∅ then:
stillooking := False;
done := True;

end
end

end

Example 6.1 .In the example of Fig.6.1 an arbitrary matching is shown
M = {(3c), (4d), (5b)} in gray heavy lines. At the next iteration we have the
set of free vertices free = {1, 2, a}. Then

SU = U
⋂

free = {1, 2, 3, 4, 5}
⋂
{1, 2, a} = {1, 2}.

We have seen = ∅ and deduce

SW = {w|w /∈ seen and (u, w, (c3), (3a)}) ∈ E, u ∈ SU}
= {b, c}. (6.1)
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Since the vertices b and c are both matched the algorithm continues. We have

SW

⋂
free = {b, c}

⋂
{1, 2, a} = ∅.

Then seen = ∅
⋃

SW = {∅, b, c}. We have

SU = {u|(wu) ∈M, w ∈ SW = {3, 5},

and according to 6.1 we have SU = {a, d}. The vertices a and d are free (or
unmatched). We then calculate

SW

⋂
free = {a, d}

⋂
{1, 2, a} = {a} 6= ∅.

We deduce that an augmenting path exists. In Fig.6.1 the Breadth-First
Search (BFS) tree has been rooted at the unmatched source 1. The augment-
ing path P is P = {(1c), (3a), (4d), (5b)} with two unmatched endpoints. The
new matching is

M = M
⊕

P

= {(3c), (4d), (5b)}
⊕

{(1c)
= {(1c), (3a), (4d), (5b)}.

At the next iteration, we have free = {2} and

SU = U
⋂

free = {1, 2, 3, 4, 5}
⋂
{2} = {2}.

Following 6.1 we deduce SW = {b} and

SW

⋂
free = {b}

⋂
{2} = ∅,

such that there no augmenting path. Looking for a further augmenting path,
we calculate

seen = seen
⋃

SW = ∅
⋃
{b} = {∅, b}.

Then we have SU = {5} and SW = {d}. Hence SW

⋂
free = ∅, such that no

augmenting path exists. We continue looking for an augmenting path with

seen = {b}
⋃
{d} = {b, d},

and finally SW = ∅, SU = ∅. No further augmenting path has been found and
the algorithm terminates with the maximum matching

M = {(1c), (3a), (4d)}.
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Fig. 6.1. Arbitrary matching and augmenting path tree

Fig. 6.2. Final maximum matching

This maximum matching is shown in Fig.6.2.

The complexity of the Ford-Fulkerson algorithm 26 is of O(E×maxflow)
27 .

26 The complexity of an algorithm is captured by the time or the number of steps it takes
to complete a problem of size n.
27 The specialized algorithm of Edmonds-Karp finding paths with breadth-first search is of
O(|V | × |E|2) time complexity. There are many other ways to solve this maximum flow
problem.
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6.2 The Edmonds - Karp algorithm

A simple implementation is taken from electronic encyclopedia Wikipedia 28 .
This algorithm is similar to the Ford-Fulkerson algorithm except that the
augmenting path must be the shortest. The matching problem can be solved
in O(|V |2 × |E|).

6.3 The hungarian method

Definition 6.2 . A vertex cover V1 of a graph G = (V, E) is a subset of
vertices such that every edge in E is incident on a vertex in V1.

If M is a matching in a graph G , then any vertex cover of G must contain
at least |M| vertices. Thus taking both endpoint of all edges produces a
vertex cover since if any edge not covered could be added to M to give a
larger matching. There is a duality between the weighted matching problem
and the weighted vertex cover problem which can be exploited to produce
polynomial-time solutions. A vertex cover seeks to find the costs ui, 1 ≤ i ≤ n
and vj, 1 ≤ j ≤ n such that for each i, j the sum of costs is minimum and
ui + vj ≥ 1. The cost of a cover (u, v) is

c(u, v) =
∑

i

ui +
∑

j

vj.

Let p(M) be a perfect matching w(M) is its cost. The duality Theorem shows
the interconnection between the minimum weight matching problem and the
minimum cost vertex cover problem.

Theorem 6.3 .(The duality Theorem). For any vertex cover (u,v) and any
perfect matching |M| we have c(u, v) ≥ w(M). Furthermore c(u, v) = w(M)
iff every edge (i, j) in M satisfies ui + vj = wij. M is then the maximum
matching and (u,v) a minimum vertex cover.

Kuhn [Ku55]proposed a polynomial-time Hungarian algorithm.

6.4 Linear programming

The primal - dual linear programming problems

Given a graph G with bipartition V (G) = (U,W ). Let us denote ∇(v) the
set of edges incident to v. A 0-1 vector x in RE(G) is the incidence vector of a

28 Adapted from Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Edmonds-Karpalgorithm
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Algorithm 6.2 : EDMONDS-KARP ALGORITHM
input: a network N(G) of bipartite graph G
output: the maximum flow in a flow network
begin

n = len(C); \\ the capacity matrix
F = [[0] ∗ n for i in xrange(n)]
\\ the residual capacity from u to v is C[u][v] − F [u][v]
while True :

path := bfs(C, F, source, sink);
while \\ for an augmenting path
if not path :

break
flow := float(”infinity”);
\\ traverse path to find smallest capacity

flow := min(flow,C[u][v] - F[u][v]) ;
for (u,v) in path :
\\ traverse path to update flow
for (u,v) in path :

F[u][v] += flow ;
F[v][u] -= flow ;

return sum([F[source][i] for i in xrange(n)])
end
procedure bfs(C,F,source,sink

queue = [source];
paths = {source: [ ]}
while queue :

u := queue.pop(0)
for v in xrange(len(C)):

if C[u][v] − F [u][v] > 0 and v not in paths :
paths[v] := paths[u] + [(u, v)];
if v == sink :

if v == sink :
return paths[v]

queue.append(v)
end
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Fig. 6.3. The incidence matrix

matching iff x(∇(v)) ≤ 1 for every vertex v ∈ V (G). The linear programming
problem is

maximize 1 .x

subject to A .x ≤ 1

x ≥ 0,

where A = (ave) is the incidence matrix of G defined by

ave =

{
1 if the vertex v is incident on edge e,

0 otherwise.

Example 6.4 . The set of the inequations forms a polytope M(G). The
solutions are those which maximize the objective function 1.x. In this example
the incidence matrix is in Fig.6.3 has the following edges : e1 = (1b), e2 =
(1c), e3 = (2b), e4 = (3a), e5 = (3c), e6 = (4a), e7 = (4d), e8 = (5b), e9 =
(5d).
The system of inequality constraints is
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x1 + x2 ≤ 1 x1 ≥ 0

x3 ≤ 1 x2 ≥ 0

x4 + x5 ≤ 1 x3 ≥ 0

x6 + x7 ≤ 1 x4 ≥ 0

x8 + x9 ≤ 1 x5 ≥ 0

x4 + x6 ≤ 1 x6 ≥ 0

x1 + x3 + x8 ≤ 1 x7 ≥ 0

x2 + x5 ≤ 1 x8 ≥ 0

x7 + x9 ≤ 1 x9 ≥ 0

Among the optimal solutions of that system there will be a 0-1 vector.

The problem of finding minimum vertex cover is similar. A 0-1 vector y is
the incidence vector of a vertex cover iff it satisfies

yu + yv ≥ 1

for every (uv) ∈ E(G). The dual linear program is

minimize 1 .y

subject to AT .y ≥ 1

y ≥ 0,

The assignment LP-problem

The assignment LP-problem consists in minimizing the total cost of as-
signing the u to w under constraints. In condensed form, we have

minimize
∑

e ∈δ(u)

c(e) x(e)

subject to
∑

e ∈δ(u)

x(e) = 1, ∀u ∈ U∑
e ∈δ(w)

x(e) = 1, ∀w ∈ W

xe ≥ 0

where v ∈ U
⋃

W , δ(v) denotes the set of incident edges to the vertex v, x is
a vector of RE, and where ce(= 0 or 1)is the cost of assigning the extremities
of edge e=(uw). We have xuw = 1 if u is assigned to w. The dual is of the
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form
maximize

∑
u ∈U

y(u) +
∑

w ∈W

y(w)

subject to y(u) + y(w) ≤ w(e),∀e = (uw) ∈ E

where y is a real vector in RU
S

W .

7 Finding all the perfect matchings

7.1 The method of variable

The method of variable is presented by Lovász and Plummer [LoPl86]. For
each edge of a bipartite graph e ∈ E(G), let xe be a variable such that A(x) =
(aij) with

aij =

{
xe if ui and wj are adjacent and e = (uiwj),

0 otherwise.

det A(x) is a polynomial of the variables xe. Every expansion term corre-
sponds to a perfect matching p(M)

Example 7.1 . Let us consider the growth model. The six matchings of
Fig.7.1 have been obtained using the method of variables. Among these match-
ings three of them may have an theoretical interpretation in economics. Thus
the matchings (b), (d) and (e) of the Fig.7.1 correspond to a wicksellian or a
friedmanian or an extreme monetarist interpretation. [Ve81] 29 .

The directed graphs that correspond to such assignments are shown in
Fig.7.2.

7.2 Finding another perfect matching

Example 7.2 The procedure for going from a perfect matching to another
is shown in Fig.7.3. It consists first in starting with a perfect matching like

29 Briefly according to the wicksellian conception the economy fluctuates as the consequence
of a gap the real and the natural interest rates. According to the friedmanian conception the
level of activity is depending on the Phillips curve : the fluctuations around the equilibrium
path are due to forecasting errors on inflation rate, it determines the nominal interest rate
and the real interest rates adjust the market of goods. The Fisher relation calculates the
nominal interest rate. According to the extreme monetarist interpretation the economic
fluctuations are imputable to the money market. The real interest rate equilibrates the
market of goods.
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Fig. 7.1. Perfect matchings of the growth model

matching (a) of Fig.7.1 for the growth model, in looking for a shortest alternat-
ing cycle like (4P ), (P5), (5P e), (P e)5 and finally take a symmetric difference
to obtain a new matching (b) of the Fig.7.1.

7.3 Finding all the perfect matchings

The algorithm of Fukuda and Matsui [FuMa92] uses the K th best solution
of assignment problems (AP) developed by Murty (68’) and Chegireddy and
Hamacher (87’). The computational time is O(n × (n + m)) and it requires
O(n + m) memory storage for each additional matching. Their recent algo-
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Fig. 7.2. Directed graphs of the growth model

Fig. 7.3. Finding another perfect matching
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Author Method Complexity Storage

Hungarian O(n1/2m) O(n + m)

method

Murty Kth- best O(n (n log n + m)) O(K n2)

(1968) solution

Edmonds and network O(n×m2)

Karp (1972) max flow

Chegireddy and O(n (n log n + m)) O(Kn)

Hamacher (1987)

Fukuda and Binary O(n1/2m + N(n + m)) O(Kn2)

Matsui (1993) partitioning

Uno (1997) O(n1/2 m + N (n + m))

Table 1
The performances of some algorithms

rithm requires ′(N(n+m)+n5/2) computational time and O(n×m) memory
storage, where N is Φ(G). First we solve the AP by the Hungarian method
and then generate each perfect matching in a lexicographic order. The proce-
dure is based on a binary partitioning where the enumeration problem can be
partitioned into two subproblems. It generalizes the Murty’s algorithm algo-
rithm for ranking the solutions of APs. Uno (97’) proposed a new approach
in two phases called trimming and balancing.

The Table 1 shows the method and the performances of some algorithms
used for finding all perfect matchings. The order of the graph is denoted by n
and its size is m. The computational time is given for each additional perfect
matching. The number of perfect matchings is N .



31

8 Application to a large size empirical model

8.1 Economic description

The annual macroeconomic model Micro-DMS (Dynamic Multi-Sector) for the
French economy consists in 82 equations with 22 behavioral equations and 69
exogenous variables. This model involves different theoretical options. The
following elements have been retained in this study : a Cobb - Douglas pro-
duction function(a Putty-Clay technology 30 ), an accelerator - substitution
function type for investments, a saving equation, exports and imports func-
tions depending on demand, disposable capacity and price competitiveness,
a Phillips type wage equation, production prices depending on wage costs,
profits and capacities, exogenous interest rates and exchange rate.

8.2 Matchings

A maximal matching and a minimal matching have been calculated for this
model. The maximal matching is at the top of Fig.8.1 corresponds exactly
to the chosen solution of the model builders. This minimal solution is at the
bottom of Fig.8.1. It differs but this solution cannot be retained because of
causalities that have no economic sense.

8.3 Graph representations

The circular embedding is drawn with the longest circuit : big black points are
those of the longest circuit, big gray points the remaining vertices of the SC,
small black points the remaining vertices of the graph 31 . The model has 143
circuits with a maximal length of 23 vertices.The directed graph embedding
is the one obtained with the maximal matching. The acyclic DAG clarifies
the whole structure and classifies the variables between those which stay up-
wards or downward are the interdependent variables. The resolution and the
analysis of the model will take advantages from this information. Both graph
embeddings are shown in Fig.8.2.

30 In this case, capital goods embody the technology at the time of their creation. Ex ante
the choice of capital intensity is based on a Cobb - Douglas production function. Ex post
the production function has the Leontief form with fixed coefficients.
31 This graph which has been obtained applying permutation matrices is isomorphic to the
initial one.
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Fig. 8.1. Maximal and minimal matchings of the model DMS



33

Fig. 8.2. Directed graph and DAG of the model DMS
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Appendix

The following supplement shows the symbol, the number and definition of
the endogenous variables of the Micro-DMS model. The exogenous variables
are not considered in this study. The number of a variable refers to the
equation that calculates this variable. The variables refer to levels, unless
otherwise indicated.

Symbol Number Definition

AII 32 other indirect taxes

AUTOF 41 corporate financing from reserves

BFS 47 corporate financing requirements

CAP 1 potential output

CFG 77 nominal government deficit

CFGP 79 ratio of CFG to PIBV

CFM 65 households financing capacities

CFX 72 balance of payments

Table .1
The list of symbols (to be continued)
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Symbol Number Definition

CI 4 intermediate goods consumption

CIG 78 interest payments of government

CIM 66 interest payments of households

CIS 50 interest payments of firms

CIX 71 interest payments of foreign sector

CO 64 consumer expenditures

CSE 34 employer social insurance contributions

CSG 73 government social insurance contributions

CSS 53 salaries social insurance contributions

CST 54 total social insurance contributions

CSUP 22 unit wage cost

DEFM 17 labor supply

DEPG 76 government expenditures

DI 67 domestic demand

DIFF 81 inflation discrepancy between France and foreign

DIVM 39 household dividends

DSTOC 45 inventories formation

DWB 8 increase rate of wage costs

EBEM 40 household activity results

FFCEI 46 investment of individual firms

FRANC 82 exchange rate of Franc

I 44 capacity investment of firms

ID 43 expected capacity investment

ILOG 62 dwelling investment

Table .2
The list of symbols (to be continued)
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Symbol Number Definition

IRPP 60 personal income tax

IS 36 profit tax

K 2 capital stock

M 68 imports

MSE 33 wage payments by firms

MSG 51 wage payments by government

MST 52 total amount of wages

N 15 total employment

ND 12 expected labor by firms

NID 11 expected labor on last generation

NE 13 effective labor

OEFM 18 stock of labor demand

PDRE 16 unemployment

PETM 21 foreign production prices

PEX 25 export price

PIB 29 real gross domestic product

PIBV 31 nominal gross domestic product

PIM 27 import price

PIMHE 26 import price excluding energy

PP 24 price of production

PROD 14 observed labor productivity

PRODT 10 underlining labor productivity

PSAUT 57 other social insurance benefits

PSCHO 55 unemployment insurance benefits

PSOC 58 national insurance benefits

PSRET 56 retirement insurance benefits

PU 28 price of domestic demand

Table .3
The list of symbols (to be continued)
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Symbol Number Definition

PVA 23 price of added value

Q 3 total added value

QD 6 expected variation of production capacities

QVAL 30 nominal added value

RBEI 38 gross profit of individual firms

RDM 61 disposable income of households

RECG 75 government receipts

RM 59 taxable income of households

SOLCOM 70 commercial balance

SUBV 35 subsidies of firms

TCHO 19 unemployment rate

TEPA 63 saving rate of households

TI 48 interest rate

TIM 49 average interest rate

TMARG 37 profit margin rate of firms

TPO 80 tax rate

TPRO 42 corporate profit

TVA 74 TVA receipts

UT 5 capacity utilization rate

UC 9 capital cost

W 20 wage rates

WB 7 wage rate and employer contributions

X 69 exports

Table .4
The list of symbols end)


