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a b s t r a c t

This empirical study explores the structure ofmacroeconomicmodels usingmajor concepts
and algorithms of the graph theory. Different sizes of applications with dynamic effects are
being considered. We will first examine the bipartite matching problem when assigning
the variables to the equations. We will also propose a simple method for improving
the regular circular embedding of graphs on the basis of one of the longest

∧
circuits by

permutating the vertices. The distribution of all the circuits is shown according to their
length. The determination of the maximal list of edge-disjoint circuits also produces a
useful insight into the structure. A typology of the interdependent variables is proposed
using the properties of one all-pairs shortest paths matrix. This classification is based on
both the diffusion effects of points towards the rest of the graph and the perturbations that
the rest of the graph exerts on these points.

© 2009 Published by Elsevier B.V.

1. Introduction 1

This empirical study explores the structure of macroeconomic models using major concepts and algorithms of the graph 2

theory [7]. Different sizes of applications with dynamic effects are being considered. Two models of the same application 3

for the Netherlands economy are considered in this paper: the
∧
small-size industry sub-model of the CS (Conjunctural- 4

Structural) model with 7 equations, and the complete large-size CS model with 82 equations. The CS sub-model is first 5

introduced to present the retained methodology: building the directed graph (or digraph) from the set of equations 6

(matching problem, circular embedding), determining the directed acyclic graph (DAG), looking for the set of all elementary 7

circuits and those of the
∧
non-edge-disjoint circuits, considering a typology of the vertices based on the properties of the 8

graph. The complete CS model is thereafter analyzed according to a comparable approach: associated digraphs to the static 9

and dynamic versions of themodel, the DAGs, all circuits enumerations and typologies. The computer calculations have been 10

effected using the software Mathematica r© 5.1 and its specialized packages DecisionAnalysis
∧
’Combinatorica, ’GraphPlot. 11

These packages can be found at http://library.wolfram.com/infocenter/ (see also [10–12]). 12

1.1. Description of the model 13

Let us introduce a small-size
∧
macroeconomic model that will be the basic reference for further applications. The yearly 14

CS industry sub-model in [2,1] for Netherlands is described by equations, where most of the variables are expressed 15

in percentage change.1 The set of variables is composed of endogenous and exogenous variables. The variables are 16

instantaneous and may be delayed by several periods (years). We have a system of seven equations 17

E-mail address: andre.keller@uha.fr.
1 The variables on population and unemployment are in numbers (×100,000). A dot above a symbol refers to percentage changes (divided by 100), such
that l̇ = (l− l−1)/l−1 , where l−1 is the value of l at the previous time period. The variable ṗc−1 is delayed by one year, ṗc−2 by two years. A variable h− 12 is
(h+ h−1)/2, and1q = q− q−1 .
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l̇ = 0.086+ 0.22
(
ṗc + ṗc−1 + ṗc−2

)
+ 0.79ḣ

−
1
2
− 0.09w

−
1
2
+ l̇au, (1)1

ṗc = 0.006+ 0.5(l̇− ḣ)− 12 + 0.25ṗmgr + 0.072ṗmc + ṗcau −
(n∗b−1
v−1
−
n∗b−2
v−2

)
, (2)2

ḣ =
y
y−1
÷
ab
ab−1
− 1, (3)3

ȧb = ċ∗p − 0.41q+1abatv − 0.033− 0.03
−5∑
i=0

(
1+ l̇
1− ṗi−wo

− 1
)
, (4)4

ab = ab−1 +1ab, (5)5

al = al−1 +1ab −1az, (6)6

1Lb =
(
al(l̇+ 1)
al−1

− 1
)
Lb−1 . (7)7

The endogenous variables are: ab the employment, al the dependent employment, h the labor productivity, l the wage8

level, Lb the disposable wage income, and pc the price level of private consumption. The exogenous variables are: abatv the9

employment induced by change in working hours, az the self-employment working population, c∗p the productive capacity10

adjusted for autonomous influences, lau the autonomouswage level, pcau the autonomous price level of private consumption,11

pi−wo the price level of imported goods (excluding housing), n
∗

b/v the ratio of stock (excluding live stock) to the total sales,12

pmc the price level of imported goods, pmgr the price level of imported raw material, and y the gross industrial product.13

∧
Eqs. (1), (2) and (4) are reaction functions, the other relations being definitions. The CS sub-model is concentrated on the14

determination of wages, prices, labor productivity and employment in industries. Eq. (1) is a Phillips–Lipsey function where15

wage rates are depending on prices (with lags over a period of two years), unemployment and labor productivity (with a16

lag of six months). Eq. (2) is a price equation of usual type, where prices of expenditures are explained by wage costs, labor17

productivity and import prices. Prices are also influenced by stock positions. Eq. (4) is for labor demand by industries. Labor18

demand depends on production capacity, real wage costs (with lags over a period of 5 years) and a technological trend. In19

this equation, real wages account for factor substitution.20

1.2. A classical resolution21

A static version of the sub-model is obtained as in [2] replacing all the predetermined variables by their observed values22

(yearly 1957 figures). A normalized system will be obtained2 in which the variable in the LHS of each equation is calculated23

by the variables of the RHS. We have24

l̇ = 0.087+ 0.22ṗc + 0.395ḣ, (8)25

ṗc = 0.04+ 0.25(l̇− ḣ), (9)26

ḣ =
37.26
ab
− 1, (10)27

1ab = 0.297− 0.1036l̇, (11)28

ab = 36.02+1ab (12)29

al = 26.69+1ab (13)30

1Lb = −11.9+ 0.45al(1+ l̇). (14)31

Fig. 1(a) shows the interactions between variables. the resulting graph consists of 7 vertices and 10 oriented edges (or32

arcs) whose (ṗc l̇) arc is oriented in both directions. Let us use the classic solving method for electrical networks. At the first33

step, the circuit {l̇,1ab, ab, ḣ, l̇} of the Fig. 1(a) is replaced by a single node λ, called the auxiliary variable. A sub-system of34

the four Eqs. (8) and (10)–(12) is associated to that circuit. If the system is solvable, the variables l̇, ḣ,1ab, ab are expressions35

of the remaining variables which are considered as parameters. A necessary and sufficient condition for a solution tells that36

the Jacobian determinant |J| is non-zero. We have37

J =

 1 0 0 −0.395
0.1036 1 0 0
0 −1 1 0
0 0 37.26a−2b 1

 .38

2 The normalized system tells uswhich equationwill calculate each endogenous variable of themodel. This form is generally deduced from the economic
theory and may be not unique.

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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(a) Initial graph. (b) Step 1.

Fig. 1. Classical solving method (first step).

Fig. 2. Classical solving method (steps two and three).

The solutions are3 1{
l̇ = f1(ṗc, λ), ḣ = f2(ṗc, λ),1ab = f3(ṗc, λ), ab = f4(ṗc, λ)

}
, 2

where the auxiliary variable λ takes positive integer values that correspond to the number of solutions. After successive 3

eliminations of the variables ḣ, ab and1ab, the following expression of l̇ has been obtained 4

l̇ = −.308+
14.7177

36.317− 0.1036l̇
+ 0.22ṗc . (15) 5

6

The expression (15) takes also the form 7

3.53206+ 0.1036(l̇)2 − l̇(36.2851+ 0.022792ṗc)+ 7.98974ṗc = 0. 8

Two solutions4 are obtained with λ = 1, 2 9

l̇′ = 175.121− 0.11
√
−1703.16+ ṗc

√
−1486.46+ ṗc + 0.11ṗc, 10

and 11

l̇′′ = 175.121+ 0.11
√
−1703.16+ ṗc

√
−1486.46+ ṗc + 0.11ṗc . 12

This process of contracting5 is illustrated in Figs. 1 and 2. The unique solution is given by 13

l̇ = 0.1108, ṗc = 0.0611, ḣ = 0.0263, 1ab = 0.2855, 14

ab = 36.3, al = 26.9755, 1Lb = 1.5844. 15

3 According to the existence
∧
–uniqueness theorem, |J|must be non-zero for a unique solution. Since |J| = 1−1.52475a−2b , wemust have ab 6=

√
1.52475.

This condition will always be satisfied for the variable ab (employment in industries) whose value for 1957 differs significantly with about 36.3(105) of
employees.
4 At this stage of the resolution, two real solutions suppose that ṗc ≥ 1486.46. This condition cannot be satisfied with the percentage changes of price.
5 A semi-reduced form of the model can be achieved at an intermediate step of its resolution (see [6]). Parameterized supply and demand functions or
IS-LM equilibrium equations are then deduced.

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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Fig. 3. A 7× 7 matrix representation.

Fig. 4. Bi-adjacency 14× 14 matrix.

2. The matching problem1

In the former normalized form of the sub-model, the matching of the variables to the equations has been imposed. Let2

us consider the matching problem in general. In the following 0–1 matrix M of the CS sub-model, the rows state for the3

equations and the columns for the variables. The entriesmij are such that4

mij =
{
1 if a variable ] in column j is present in equation ] in line i,
0 otherwise.5

The matrixM is shown in Fig. 3. To solve the model, one has to assign each variable to one single equation. This problem is6

known as a matching problem.7

2.1. Presentation8

Matching is a graph optimization problem (see [8]: 254–305). Let us introduce some definitions from [4,5].9

Definition 1 (Bipartite Graph). A graph G = (U
⋃
W , E) is bipartite if its set of vertices can be partitioned into two sets U10

andW , such that every edge in G has one endpoint in U and one endpoint inW . The sets U and W are the color classes of G11

and (U,W ) a bipartition of G.12

Definition 2 (Bipartite and Perfect Matching).13

1. A bipartite matchingM is a set of pairwise non-adjacent edges in a bipartite graph G = (U
⋃
W , E)where Umay denote14

the set of equations of a given system and W the set of variables. That is,M ⊆ E(G) such that e1, e2 ∈ M, e1 = (i1, j1),15

e2 = (i2, j2) and i1 = i2 ⇔ j1 = j2.16

2. A perfect matching p(M) of the bipartite graph G = (U
⋃
W , E) is a pairing of the set U to the setW which uses each17

element of U and each element of W, once and only once. Such a matching covers all the vertices of the graph.18

The bi-adjacency matrix B = (bij) is defined by19

bij =
{
1 if (uiwj) ∈ E(G),
0 otherwise.20

The bi-adjacency matrix of the CS model is shown in Fig. 4: for convenience, a black square states for one 1 and a point for21

zero. A matching matches each vertex in U = {u1 . . . un} to one in W = {w1, . . . , wn}. Hall’s marriage theorem (see [8])22

states that there is a matching in which every equation can be married, if and only if, every subset S of equations knows23

a subset of variables at least as large as |S|. A polynomial-time matching algorithm follows from Berge’s theorem, which24

states that a matching is maximum, if and only if, it contains no augmenting path. The algorithm starts with an arbitrary25

matching. Thismatching can be improved by finding anM-augmenting path P , if any. ThenM is replacedwith the symmetric

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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Fig. 5. Maximummatching and maximum restricted matching.

difference (M − P)
⋃
(P − M). The matching is maximum when it contains no augmenting path. Given a graph G with 1

bipartition V (G) = (U,W ). Let us denote ∇(v) the set of edges incident to v. A 0–1 vector x in RE(G) is the incidence vector 2

of a matching, if and only if, x(∇(v)) ≤ 1 for every vertex v ∈ V (G). 3

2.2. Solution 4

The linear programming problem in matrix form, is 5

max
x

1 · x 6

s.t. A · x ≤ 1 7

x ≥ 0, 8

where 1 is a vector of ones and A = (ave) the incidence matrix of Gwith 9

ave =
{
1 if the vertex v is incident on the edge e,
0 otherwise. 10

The set of the inequations forms a polytopeM(G). The solutions are those which maximize the objective function 1 · x. The 11

incidence matrix of the CS sub-model is shown in Fig. 6. 12

The system of inequality constraints is 13

e1 + e2 + e3 ≤ 1, e1 ≥ 0, e2 ≥ 0, e3 ≥ 0, 14

e4 + e5 + e6 ≤ 1, e4 ≥ 0, e5 ≥ 0, e6 ≥ 0, 15

e7 + e8 ≤ 1, e7 ≥ 0, e8 ≥ 0, 16

e9 + e10 ≤ 1, e9 ≥ 0, e10 ≥ 0, 17

e11 + e12 ≤ 1, e11 ≥ 0, e12 ≥ 0, 18

e13 + e14 ≤ 1, e13 ≥ 0, e14 ≥ 0, 19

e15 + e16 + e17 ≤ 1, e15 ≥ 0, e16 ≥ 0, e17 ≥ 0, 20

e1 + e4 + e9 + e15 ≤ 1, 21

e2 + e5 ≤ 1, 22

e3 + e6 + e7 ≤ 1, 23

e10 + e11 + e13 ≤ 1, 24

e8 + e12 ≤ 1, 25

e14 + e16 ≤ 1, 26

e17 ≤ 1. 27

Among the optimal solutions of that system there will be a 0–1 vector. 28

Theorem 3 ([8]). Let G be a bipartite graph. Then the vertices of the polytope {x ∈ RE(G), x ≥ 0,A · x ≤ 1} are 0–1 vectors. In 29

fact, they are exactly the incidence vectors of matchings. 30

The computation renders a technical matching which is shown in Fig. 5(a). However, the economist would not accept 31

this assignment of the variables to the equations. Indeed the econometric equations generally impose the causality going 32

from the explanatory to the explained variables. Let us impose that the econometric
∧
equations (1), (2) and (4) compute the 33

adequate variable. Then the variable l̇will be assigned to (1), variable ṗc to (2) and variable ȧb to (4). The matching is shown 34

in Fig. 5(b) will then be retained by the economists. 35

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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Fig. 6. Incidence matrix.

Fig. 7. Circular embedding of the graph and DAG.

a1

Fig. 8. Strong component (a) and contracted graph (b).

3. Embedding of the small-size graph1

In a circular embedding the vertices are placed on the circumference of a unit circle, computing evenly spaced points.2

Considering that the property stating that no three vertices are collinear, an illustration is given in Fig. 7(a) for the directed3

graph G = (7, 10), with 7 vertices and 10 oriented edges.64

Definition 4 (Connected Component). Connected components of a graph are maximal connected subgraphs.5

Definition 5 (Strong Component). A strong component of a graph (SC) is a maximal strongly connected subgraph, where the6

vertex sets partition the set V and does not include all edges of G.7

The strong component (SC) is shown in Fig. 7(b) as a set of gray points. The directed acyclic graph (DAG) is achieved after8

contracting these sets and reveals the structure of the graph.9

Proposition 6. The condensation of a digraph is an acyclic digraph DAG which contains no circuits. This operation may produce10

multiple parallel edges.11

Contracting a pair of vertices v1 and v2 replaces them by one vertex v such that it is adjacent to any adjacent vertex of v112

and v2.7 The procedure of contracting a strong component is illustrated in Fig. 8.13

6 This graph is simple since it has neither self-loops nor multi-arcs. It is a sparse graph since the cardinalities of sets V and E are close together.
7 Let G be an n-vertex graph and a subset S of k vertices to contract. The resulting graph H has n − k + 1 vertices. Each vertex in S is mapped to the
n− k+ 1 vertices of H . Contract runs in linear time O(|V |).

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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Fig. 9. Initial (a) and ordered (b) longest circuit.

Fig. 10. Central vertices (big points), articulation points (gray squares) and all-pairs shortest paths.

4. Set of circuits and non-edge-disjoint circuits 1

The initial digraph of the sub-model consists in 3 circuits, defined by elementary closed paths like C = {v1, v2, . . . , v1}. 2

The longest circuit is composed of the list {l̇,1ab, ab, ḣ, ṗc, l̇}. Fig. 9(b) shows an improved representation where the set of 3

vertices is decomposed into two subsets: the subset of reordered vertices of the longest circuit, and the subset of remaining 4

vertices of the graph. Thus the graphH , obtained after successive permutations of its vertices, is isomorphic toG.8 Amaximal 5

list of edge-disjoint cycles is shown in Fig. 9(b). The extracted edge-disjoint cycles are highlighted. 6

5. Invariant properties of a small-size model 7

5.1. All-pairs shortest paths matrix 8

The computation of the all-pairs shortest paths matrix is essential for judging the eccentricity of the SC. This squared 9

matrix collects all finite distances d(x, y) that are precisely the length of the shortest x–y paths (one path always exists 10

in the SC where all vertices are reachable)9 using
∧
Dijkstra’s algorithm or the Bellman–Ford algorithm (see [10,9,3]). The 11

all-pairs shortest paths matrix is shown in Fig. 10(b). Several graph invariants are depending on this distance matrix. 12

5.2. Eccentricity, central and peripheral vertices, articulation vertices 13

The eccentricity for each vertex v is simply the maximum of the shortest paths starting from v. 14

Definition 7 (Eccentricity of a Vertex)). The eccentricity of a vertex v in graph G ecc(v) is the distance from v to any farthest 15

vertex from it. Hence, we have 16

ecc(v) = max
x ∈ V (G)

{d(v, x)}. 17

In this example, we have the list {3, 4, 3, 3, 3}. Some graph invariants are deduced. The minimum eccentricity is the radius 18

rad(G) and the maximum eccentricity the diameter diam(G). 19

8 There exists a bijection φ : V (G) 7→ V (H) such as for every pair u, v ∈ (G) one have an edge (uv) ∈ E(G), if and only if, there is an edge
(φ(u)φ(v)) ∈ E(H).
9 The all-pairs shortest paths can be computed in O(|V |2.|E|) time using the Bellman–Ford algorithm or in O(|V |3) time using

∧
Dijkstra’s algorithm.

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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Fig. 11. Root embedded graph and
∧
non-edge-disjoint circuits.

Definition 8 (Radius, Diameter of a Graph).1

1. The radius is the minimum eccentricity2

rad(G) = min
x ∈ V (G)

{ecc(x)}.3

The central vertices are those vertices whose eccentricity equals the radius. The center of a graph G is the subgraph Z(G)4

induced on the set of central vertices.5

2. The diameter is the maximum eccentricity6

diam(G) = max
x ∈ V (G)

{ecc(x)}.7

The peripheral vertices are those vertices whose eccentricity equals the diameter. The periphery of graph G is the8

subgraph per(G) induced on the set of peripheral vertices.9

In this application, ecc(v) = {3, 4, 3, 3, 3}, rad(SC) = 3, diam(SC) = 4. The center is Z(G) = {l̇, ḣ,1ab, ab}. The peripheral10

vertex is ṗc . The central vertices are shown with big gray points in Fig. 10(a).11

Definition 9 (Strongly Connected Graph). A directed graph is strongly connected if there is an oriented path between every12

pair of vertices. A directed graph is weakly connected if there a path between each pair of vertices in the underlying13

undirected graph.14

The articulation vertices of the whole graph whose deletion disconnects the graph are shown in light gray squares. The15

articulation vertices are {l̇,1ab, al}.16

5.3. Rooted embedding and graph traversals17

Rooted embeddings are used to represent hierarchies. One vertex is chosen as the root. The other vertices are ranked18

according to their distance (or depth) to the root. The rooted embedding of the graph is generally drawn choosing a center19

as a root to have a more balanced embedding (see Fig. 11).20

The graph traversals are essential to explore all the vertices and edges of the G and deduce various graph properties.21

Two different approaches lead to linear time algorithms: the depth-first search (DFS) and the breadth-first search (BFS). The22

recursive function DFS starts with a vertex (as with a center) and scans its neighbors until the first unexplored vertex is23

found. The recursive function BFS starts with a vertex and explores all the adjacent vertices to the current vertex and then24

continues. These explorations on the graph of the CS sub-model, with the central vertex ḣ as a root are shown in Fig. 12.25

5.4. Dynamic steady-state graph26

The introduction of the delayed variables is done without making time explicit. Here, we will consider a system close27

to a
∧
steady-state situation where all the variables grow at the same rate. A pseudograph is obtained with self-loops and28

multiple edges (Fig. 13). A self-loop occurs when a variable is depending on itself in the case of one hysteresis effect.Q129

Multiple edges appear when a variable observed at time t on another multiple delayed variables. Moreover the size of30

the longest circuit is increased to 5 vertices, and we have only one central vertex with a weaker radius rad(SC) = 2. Since31

ecc(v) = {3, 4, 3, 3, 2}, we have diam(SC) = 4. The central vertex is {ab} and the peripheral vertex {ṗc}.32

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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Fig. 12. Depth- and breadth-first search.

Fig. 13. Pseudograph of the dynamic graph.

Table 1
Typology of variables in the SCs of the static and dynamic sub-model CS.

ḣ ḣ
A B∗ B A B∗ B

ṗc l̇1ab , ab ab
D∗ C∗ C D∗ C∗ C

ṗc ab l̇
D C 0 variable D C 1 variable

6. Typology based on the graph invariants 1

6.1. A typology of vertices 2

The typology is based on the all-pairs shortest paths matrix, corresponding to the largest SC . The maximum distance of 3

each row is placed in a column vector to the right. This vector expresses the out-eccentricity fromwhich we can deduce the 4

radius and the diameter. The maximum distance of each column is placed in a row vector below. This vector expresses the 5

in-eccentricity from which we deduce the opposite in-radius and the in-diameter. Both criteria are crossed in a 3× 3 table, 6

where the columns state successively for the periphery P of the SC, the center C and other points P̄
⋃
C̄ with intermediate 7

properties. The rows state for the same in-values with the opposites ¬P , ¬C , ¬P̄
⋃
¬C̄ . We have deduced four types 8

of variables. The type A shows an eccentric variable which is weak perturbed and exerts low influences. The type B∗ 9

corresponds to
∧
low perturbations but strong influences. The type C∗ states a strong integrated variable which is close to 10

all other interdependent variables. The type D∗ shows a strong dominated variable with a strong perturbation and weak 11

influence. 12

6.2. Properties of the CS sub-model 13

The results for the sub-model CS are shown in Table 1. In the static to the left, the employment and wages {1ab, ab, l̇} Q2 14

are integrated variables. The productivity ḣ dominates and price ṗc is a dominated variable. In the dynamic version, the 15

perturbations and influences of the variables are weaker with a similar role. 16

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
doi:10.1016/j.disc.2009.05.008
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Fig. 14. Initial graph and 82× 82 adjacency matrix.

Fig. 15. Graphs of the complete static and dynamic CS model.

7. Extended analysis to large-size models1

7.1. Presentation2

The complete model for Netherlands (see [1]) consists in 82 equations. This study shows the results for the static and the3

dynamic steady-state version. The initial circular embedding is shown in Fig. 14(a) for the static version of the model. The4

numbers and symbols refer to the described variables in the Appendix. The adjacency matrix in Fig. 14(b) shows a sparse5

graph with a low density of less than 2 per cent.106

Improved representations are shown in Fig. 15. The circular embedding is drawn with one of the longest circuits: big7

black points are those of the chosen longest circuit, big gray points are the remaining vertices of the SC, small black points8

are the remaining vertices of the complete graph.9

7.2. Enumeration of the circuits10

The static version has 143 circuits with a maximal length of 23 vertices. The dynamic version has 3212 circuits with a11

maximal length of 46 vertices. The distribution of the circuits by length in both versions is described in Fig. 16. A longest12

circuit of the static model is described by the list13 {
yb, q, ȧb,1ab,1w,w, l̇, ṗ′c, ṗc,1TK ,1N,1VD,1TK , TK , Z, Z

D, C, c, v,1v, n,1n,mm, yb
}
.14

10 This property justifies to prefer an adjacency list representation. The 82-vertex graph consists in 82 lists, with one list for each vertex. Each list records
the vertices that are adjacent to the given vertex.
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Fig. 16. All circuits of the static(a) and dynamic(b) version.

Fig. 17. Short and long edge-disjoint cycles of the static version.

This longest circuit is interpreted as the circular flows of goods and incomes in an open economy with the sequence: 1

production–labor force–wage and price–incomes and taxes–total demand. The dynamic version has 3212 circuits with a 2

maximal length of 46 vertices. A longest circuit of the dynamic model is described by the list 3{
yb, y, ẏ, ḣ, K̇ , K , bm, Bm, B,1B,1Y , r, ig , v,mm,Mm,M,1Lq(ex), 4

1Lq(g),1Lq, Lq, i,1i, i̇,1I, I, ṗi, ȧb, ab,1w,w, l̇, ṗicg , picg ,1Icg ,1VD,1TK , TK , Z, Z
D, C, ṗc, pc, c, yb

}
. 5

The longest circuit also corresponds to an extended circular flow where the liquidities and investments interact. We 6

have the sequence: supply side (production, productivity, competitiveness)
∧
–
∧
imports –liquidities–investments–prices–labor 7

market–prices and wages–taxes–revenues–consumption. At this stage, we can verify that the static (or short term) version 8

corresponds to a
∧
demand-driven model, and that the dynamic steady-state version shows a

∧
supply-driven model. 9

7.3. Non-edge-disjoint circuits 10

The static version of the CS model is composed of a maximal list of 5
∧
non-edge-disjoint circuits in Fig. 17(a): the labor 11

market C1 = {1w,1P,1w}, the disposable wage income C2 = {1LZ ,1TL,1LZ }, the disposable non wage income 12

C3 = {1ZZ ,1TZ ,1ZZ }, the circular flow of goods and incomes C4 = {1C,1VD,1TK , TK , Z, ZD, C,1C}, and the circuit 13

prices
∧
– wage – productivity – employmentC5 = {c, yb, q, ȧb, ḣ, l̇, ṗ′c, ṗc, C, c}. The circuitsC4 andC5 are connected by the 14

consumption C . The circuit C5 is close to the longest circuit of the CS sub-model. 15

The dynamic version is composed of 13
∧
non-edge-disjoint circuits in Fig. 17(b). The circuits C1 to C4 are the same as 16

in the static version. The circuit C5 is comparable. The other circuits are: the cycle
∧
investment-demand C6 = {i, v, i} 17

and C7 = {I,1I, I}, the taxes C8 = {TL,1TL, TL}, the cycle of productivity C9 = {l̇, ȧb, ḣ, l̇}, the cycle
∧
money- 18

production C10 = {Y ,1Lq(g),1Y , Y }, the cycle
∧
investment-capacities C11 = {i,1ca, ca, q, i}, the cycle of exports C12 = 19

{K , bm, v, n,1n,mm,Mm, ṗc, l̇, K̇ , K}, the cycle of supply C13 = {i, yb, y, ẏ, ḣ, l̇ṗ′ i, ṗi,1I,1VD,1Y ,1Lq(ba),1Lq, Lq, i}. 20

7.4. Directed acyclic graphs 21

The DAGs are shown for the two versions of the CS model in Fig. 18. The vertex Φ in gray is the contraction of the 22

largest SC. In the static version, the variables that dominate the SC are exports (B, bm), import price (pm), liquidities and 23

Please cite this article in press as: A.A. Keller, Graph theory and economic models: From small- to large-size applications, Discrete Mathematics (2009),
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Fig. 18. DAGs of the complete static and dynamic model.

Table 2
The typology of variables in the SCs of the static and dynamic model.

TL TL
A B∗ B A B∗ B

C ,1VD yb , C , v, VD
D∗ C∗ C D∗ C∗ C

ṗ′ i , ṗig , ṗicg ṗc 47 variables ṗig , ṗicg l̇,Mm 69 variables
D C D C

interest rates (1Lq, r), investments (i, ig ), and supply side (ca, h). These elements correspond to a short term structure. In the1

dynamic version, the SC is composed of a large set of 78 vertices. The four remaining vertices of the supply side {pm, pcg , l, h}2

dominate the SC.3

The articulation vertices of the whole two graphs have a common set of vertices with {c, ca, LD, ḣ, l,1LZ , v, ṗc, ZD, l̇, ȧb}.4

The specific articulation vertices of the static version are {1ca, q, n,1Lq(ba),1Lq(g),1Lq(ex),1Y ,M,1I1Lq, K̇}. The5

particular articulation vertices of the dynamic version are {i,1VD}.6

7.5. Typology of the vertices7

Table 2. gives the properties of the SCs which collect the interdependent variables of the model for both versions. In8

these versions the taxes TL are weakly dominant, the investment prices {pig , picg } are weakly dominated, the consumption9

and sales {C,1VD} are weakly integrated. The price ṗc is a particular weakly integrated vertex of the static version. This10

variable is the central vertex in the complete CS model, though it was a peripheral in the sub-model.The supply variables11

{yb, v,Mm, l̇} are particular weakly integrated vertices of the dynamic version.12

8. Conclusion13

This study provides a useful insight into the structure of
∧
macroeconomic models. This knowledge is essential for analysis14

and economic policy purposes, when looking for instance at the qualitative propagation of some policy measures. The15

concepts and algorithms of the graph theory are adequate for such an attempt.16

Three major but simple proposals are made in this paper: first, a performed graph embedding based on one of the17

longest circuits, secondly the determination of the maximal list of
∧
non-edge-disjoint circuits, and thirdly a typology of18

vertices which combines the importance of the influences and perturbations to and from the remaining vertices of the19

graph.20

Appendix. Supplement with the CS model21

Tables A.1–A.3 show the symbol, the number and definition of each endogenous variable of the CSmodel. The exogenous22

variables are not considered in this study. The number of a variable refers to the equation that calculates this variable.Q323

The variables refer to levels, unless otherwise indicated. Capital symbols refer to values in current prices, small symbols24
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Table A.1

Symbol Number Definition

ab 72 Employment in industries
1ab 48 do, in absolute variation
ȧb 5 do, in percentage change
B 46 Total exports
1B 68 do, in absolute variation
Bm 70 Merchandise exports
bm 11 do, in volume
C 6 Private consumption
c 56 do, in volume
1C 59 do, in absolute variation
ca 25 Productive capacity
1ca 1 do, in absolute variation
ċ ′a 27 Productive capacity, adjusted for weather influences
h 39 Labor productivity in industries
ḣ 35 do, in percentage change
I 81 Gross industrial investment in fixed assets, excl. housing
1I 61 do, in absolute variation
1Icg 64 Gross industrial investment by central government
1Ig 62 Gross industrial investment by local authorities, incl. housing
i 7 Gross industrial investment in fixed assets, excluding housing
1i 82 do, in absolute variation
i̇ 37 do, in percentage change
ig 9 Gross industrial investment by local authorities, incl. housing
K 79 Advantage in labor costs over foreign competitors
K̇ 78 do, in percentage change
l 38 Wages level in industries
l̇ 12 do, in percentage change
LD 29 Total disposable income

Table A.2

Symbol Number Definition

Lb 50 Disposable income in industries
L̇b 49 do, in percentage change
Lg 52 Public disposable appointments
L̇g 51 do, in percentage change
Lq 77 Total amount of liquidities in circulation
1Lq 76 do, in absolute variation
1Lq(ba) 22 Creation of liquidities by banks
1Lq(g) 23 Creation of liquidities by the government
1Lq(ex) 24 Creation of liquidities via external payments
LZ 75 Taxable wage income
1LZ 41 Taxable wage income, in absolute variation
M 47 Total imports
1M 69 do, in absolute variation
Mm 71 Merchandise imports
mm 10 do, in volume
1N 66 Goods in stocks in absolute variation
n 8 do, in volume
1n 34 do, in absolute variation
n′ 80 Goods in stock, excl. live stock
1P 4 Labor supply, in absolute variation
pc 60 Price of private consumption
ṗc 31 do, in percentage change
ṗ′c 14 do, excl. consumption goods imported
pcg 15 Price of government consumption
ṗi 28 Price of industrial investment
ṗ′ i 16 do, excl. investment goods imported
picg 65 Price level of central government investment
ṗicg 18 do, in percentage change

to volumes in constant prices. Variables with a dot refer to percentage changes. The symbol 1 denotes an absolute 1

variation. 2
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Table A.3

Symbol Number Definition

pig 63 Price of local authorities investment, incl. housing
ṗig 17 do, in percentage change
pm 40 Price of total imports
q 3 Surplus capacities
r 13 Rate of long term interest
TL 53 Taxes on wage income
1TL 19 do, in absolute variation
TK 74 Indirect taxes minus subsidies
1TK 20 do, in absolute variation
TZ 55 Taxes on non-wage income
1TZ 21 do, in absolute variation
v 32 Total sales, excluding invisible exports and stock formation
1v 33 do, in absolute variation
VD 73 Total sales, excl. exports of goods, incl. stock formation
1VD 42 do, in absolute variation
w 36 Unemployment
1w 26 do, in absolute variation
Y 45 Gross national product, at market prices
1Y 44 do, in absolute variation
y 57 Gross national product, at market prices
ẏ 58 do, in absolute variation
yb 2 Gross national product in industries, at market prices
Z 54 Total taxable income
ZD 30 Disposable non-wage income
1ZD 67 do, in absolute variation
1ZZ 43 Taxable non-wage income, in absolute variation
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