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Abstract— This paper introduces to constructing problems of 
convex relaxations for nonconvex polynomial optimization 
problems. Branch-and-bound algorithms are convex relaxation 
based. The convex envelopes are of primary importance since 
they represent the uniformly best convex underestimators for 
nonconvex polynomials over some region. The reformulation-
linearization technique (RLT) generates LP (linear 
programming) relaxations of a quadratic problem. The LP-RLT 
yields a lower bound on the global minimum. RLT operates in 
two steps: a reformulation step and a linearization (or 
convexification) step. In the reformulation phase, the constraints 
(constraints and bounds inequalities) are replaced by new 
numerous pairwise products of the constraints. In the 
linearization phase, each distinct quadratic term is replaced by a 
single new RLT variable. This RLT process produces an LP 
relaxation. LMI formulations (linear matrix inequalities) have 
been proposed to treat efficiently with nonconvex sets. An LMI is 
equivalent to a system of polynomial inequalities. A 
semialgebraic convex set describes the system. The feasible sets 
are spectrahedra with curved faces, contrary to the LP case with 
polyhedra. Successive LMI relaxations of increasing size can be 
used to achieve the global optimum. Nonlinear inequalities are 
converted to an LMI form using Schur complements. Optimizing 
a nonconvex polynomial is equivalent to the LP over a convex set. 
Engineering application interests include system analysis, control 
theory, combinatorial optimization, statistics, and structural 
design optimization. 

Keywords—convex relaxation; polynomial optimization; 
nonconvex optimization; LMI formulation; structural optimization 

I.  INTRODUCTION  
This paper introduces to the problem of constructing 

convex relaxations for nonconvex polynomial optimization 
problems. Techniques such as outer-approximation, branch-
and-bound (B&B) algorithms, reformulation-convexification 
methods are convex relaxation based [1].  

Convex extensions and envelopes are of primary 
importance to the efficiency of global optimization methods. 
These notions reflect the capability to construct tight convex 

relaxations1. Locatelli [3] determines convex envelopes for 
quadratic and polynomial functions over polytopes. Convex 
underestimators of nonconvex functions over some region are 
essential to B&B techniques. However, computing convex 
envelopes is NP-hard, even for simple polynomials2. The 
nuclear norm (i.e., the sum of singular values) heuristic is also 
used instead of the convex envelope of the objective function. 
The affine matrix rank minimizing problem (RMP) uses the 
nuclear norm of the rank function. In this case, the nonconvex 
objective rank function is replaced by its convex envelope (i.e., 
the nuclear norm) [4]. In statistics, this important practical 
problem may consist of finding the least complex stochastic 
model, which is consistent with observations and priors. 

The reformulation-linearization technique (RLT) generates 
LP (linear programming) relaxations of a quadratic problem 
[5]. The LP-RLT yields a lower bound on the global minimum. 
RLT operates in two steps: a reformulation step and a 
linearization (or convexification) step. In the reformulation 
phase, the constraints (constraint and bound inequalities) are 
replaced by new pairwise products of the constraints (i.e., 
bound factor product, bound-constraint factor product, and 
constraint factor product inequalities). In the linearization 
phase, each distinct quadratic term is replaced by a single new 
RLT variable. This RLT process produces an LP relaxation. 

LMI (linear matrix inequalities) formulations have been 
proposed to treat efficiently with nonconvex sets. An LMI is 
equivalent to a system of polynomial inequalities. A 
semialgebraic convex set describes the system. The feasible 
sets are spectrahedra with curved faces, contrary to the LP case 
with polyhedra. SOS (sum of squares) relaxations can be used 
to obtain good approximate SDP (semidefinite programming) 
descriptions of convex envelopes (e.g., computing the convex 
envelope of quadratic forms over polytopes via a semidefinite 
program). Successive LMI relaxations of increasing size can be 
used to achieve the global optimum3. Nonlinear inequalities are 

                                                           
1 The theory of convex extensions is developed for lower semi-continuous 
functions in [2]. 
2 A proposition may consist in computing the convex envelopes over simpler 
domains such as triangles. Some examples are proposed in [3]. 
3 The approach consists in approximating a programming problem (PP) by a 
sequence of easier relaxed problems, such that the sequence of solutions 



converted to an LMI form using Schur complements. 
Optimizing a nonconvex polynomial is equivalent to the LP 
over a convex set.  

Engineering application interests include system analysis, 
control theory, combinatorial optimization, statistics and 
structural design. As a practical illustration, one can mention 
the truss topology design problem. This problem can be set to 
an equivalent LMI, by using the Schur lemma for linearization. 

This article is organized as follows. Section II introduces to 
some important convex transforms in practice, such as the 
eigen-transformation, the convex envelopes, the nuclear norm 
and the conjugacy transform. The basic reformulation-
linearization technique is presented in Section III for 
nonconvex QP (quadratic programming) problems. An 
illustrative numerical example is solved in Appendix A. The 
effectiveness of semidefinite programming (SDP) in 
polynomial optimization is shown in Section IV. The following 
essentials aspects are introduced: the LMI feasibility sets, the 
LMI formulation of SOS (sum of squares) polynomials, and 
simplified engineering application to this approach. Appendix 
B is devoted to the SDP interpretation of quadratic 
optimization problems. 

II. CONVEX TRANSFORMS 
Convexification transformation methods can convert a 

nonconvex problem to an equivalent problem, such as a 
concave minimization problem, a reverse convex 
minimization problem or a difference convex (d.c.) 
programming problem. The followings are restricted to 
concepts such as the eigen-transformation, convex envelopes, 
nuclear norm and conjugacy transformations. 

A. Eigen-Transformation [10] 
Let QP problem be 
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The eigen-transformation for the QP problem is a particular 
linear transformation based on the eigenstructure  of the 
quadratic objective. Let T=Q PDP where D  is diagonal with 
eigenvalue elements of Q , and P  column eigenvectors. 

Define =x Pz , so that T=z P x . The resulting eigen-
transformed QP is  

                                                                                                     
converge to a global solution of the global optimization problem. This outer 
approximation method (known as the cutting plane method) was initially 
introduced by Kelley Jr (1960) in convex programming [6]. Kelley’s cutting 
plane algorithm starts with a relaxed LP (linear programming) solution. 
Thereafter, it find the solution by successively adding constraints (i.e., 
constructed cuts) to the problem [7], pp. 463-465 and [8], pp. 316-323. The 
outer-approximate with increasingly tighter convex programs was extended by 
Tuy (1983) [9] to general nonconvex optimization problems. 
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B. Convex Envelope 
Definition 1. The convex envelope for a nonconvex function 
f  and region X  is the largest convex underestimator of f  

over X , so that 

( ) ( ) ( ){ },conv sup :f X
nc c ' f ' , ' X ,= ≤ ∀ ∈ ⊂x x x x   

where ( ).c  is a convex function. □ 

The convex envelope can be a convex polyhedral 
representation, i.e., the maximum of a finite number of affine 
underestimators. In [11], Locatelli and Schoen derive convex 
envelopes of bivariate functions ( ),f x y  over general two- 
dimensional polytopes, assuming that some conditions on f  
are satisfied. Carathéodory’s theorem yields the convex 
envelope of f  at a point K P∈ . Given a polytope nP ⊂   
and a function f , we have the PP 

( ) ( ){ }1

,
1

1 1

1 1

conv min : , 1, , 1 ,

subject to :

1, , 0.

n

f P i i i
ï

n n
i i i ii i

K f Q Q P i n

Q K

λ

λ λ λ

+

=

+ +

= =

= ∈ = +

= = ≥

∑

∑ ∑

    

    

 

Theorem 1 [1], pp. 45-46. Let ( )f x  be a lower 
semicontinuous function defined on the convex compact set 

nX ⊂   and ( )φ x  be the convex envelope of f  on X , then 
we have 

(i) ( ) ( ) ˆminimize minimize
X X

f fφ
∈ ∈

= =
x x

x x     

(ii) ( ){ } ( ){ }ˆ ˆX : f f X : fφ∈ = ⊆ ∈ =y y y y .□ 

Hence, the theorem states that for each nonconvex PP on a 
convex feasible region, one can associate a convex PP for 
which we have the same optimal solution. 

Example 1. Let the nonconvex polynomial of degree 4 in Fig.1 

( ) 2 3 41.5 2.882 1.277 0.096 0.005f x x x x x= + − + +  

where [ ]0, 7x∈ . The convex envelope is 

( )
[ ]

( ) [ ]
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Fig 1.  Convex envelope of a nonconvex polynomial over a closed convex 

interval. 

C. Nuclear Norm 
Complexity and dimensionality of the system can be 

expressed  by means of the rank of a matrix. In [4] a low-rank 
matrix should correspond to different situations in statistics, 
system identification or control, e.g., a low-degree for a 
random process model, a low-order realization of a linear 
system. An affine rank minimization problem (RMP) consists 
of finding a matrix of minimum rank that satisfies a system of 
linear equality constraints[4]. 
Definition 2. The nuclear form of the m n×  matrix X  (or 
Schatten 1-norm, or Ky Fan r -norm) is the sum of its 
singular values, i.e., 

{ }

( ) ( ) ( )*

min ,

1

T
m n

i i i
i

,σ σ λ
=

= =∑X X X X X  .□ 

Let the RMP [4][12] be 

( )

( )

minimize   rank

subject to :

,=

X

X bA

 

where : m n p×
 A  is a linear mapping. In statistics, RMP 

can refer to the problem of finding the least complex stochastic 
model according to the available observations and prior 
assumptions4 [12]. 

Theorem 2. The convex envelope of the rank function 
( ) ( )rankφ =X X over the set of matrices with bounded norm 

{ }: 1m n×= ∈ ≤X XS is ( )env *
φ =X X .□ 

                                                           
4 Let the variance-covariance matrix [ ]( ) [ ]( )[ ]E E E

T
= − −X z z z z     of 

the random z . In this application, the rank of X  denotes the complexity of 
the stochastic model, i.e., the number of independent random variables needed 
to explain the variance-covariance matrix. The trade-off that we have in 

practice between the model complexity (i.e., ( )rank X ) and its accuracy 

( )f X  is illustrated in [12]. 

Proof5: See [12], pp. 54-60 □ 

Since the nuclear norm is the convex envelope of rank, the  
problem is 

( )

*
minimize   

subject to :

.=

X

X bA

 

D. Conjugacy Transformation [13] 
Conjugacy transformation (or Legendre-Fenchel 

transform) associates with any function f  a convex function 
*f  called convex conjugate. This important notion intervenes 

in the Lagrangian duality. It relates the dual with the primal 
function.6 
Definition.3. Let the closed convex differentiable function 

( ): ,nf −∞ ∞ .  

The Fenchel conjugate ( )* : ,nf −∞ ∞  is 7 

( ) ( ){ }* sup ,
n

f f
∈

−
x

y x y x



  .□ 

It is a generalization of the Legendre transform8. It 
expresses the maximum gap between the linear Tx y  and 

( )f x [13] pp. 82-89. 

The properties of the conjugate function are 

• *f  is always convex, since it is the pointwise 
supremum of a family of convex functions of y . 

• If f and *f  are convex, and their epigraph is 

closed convex, then ( )** * *f f f f= = . 
Therefore, the conjugacy transform is a symmetric 
transformation. 

• If f and *f  are convex, then they satisfy the 
Fenchel-Young inequality 

( ) ( )* ,f f+ ≥x y x y  for all ,x y . 

Example 2. [16], pp. 72-74. Let the univariate exponential 
function ( ) xf x e=  where x∈ . If 0y < , the expression 

xy x e−  is unbounded, so that ( )*f y = +∞ . For 0y = , we 

                                                           
5 The proof of the convex envelope theorem is using the conjugate functions. 
6 On the conjugacy correspondence, see Bertsekas et al. [14], pp. 432-434. 
7 The domain of the conjugate function consists of 

n∈y  for which the 

supremum is finite, i.e. the difference is bounded above on ( )dom f . 
8 The Legendre transform for invertible gradient of f is 

( ) ( ) ( )( )* 1 1

,f f f f
− −

= ∇ − ∇s s s s . See [15]. 



have sup 0x

x
e− =   . If 0y > , the expression xy x e−  reaches 

its maximum at ˆ logex y=  . We deduce the convex conjugate 

( )* logef y y y y= − .9 

Example 3. Let the negative entropy10 function 
( ) logf x x x=  on ( )dom f

++
=  . The expression 

logy x x x−  is bounded above on 
+

  for all y . Hence 

( )*dom f =  . We deduce ( )* 1yf y e −= . The epigraphs of 
the original function and that of its convex conjugate are 
pictured in Fig 2. 

 
 

Fig 2 Convex conjugate of a negentropy function. 

III. LP RELAXATIONS FOR NONCONVEX 
QUADRATIC POLYNOMIAL PROGRAMS 

The Reformulation-Linearization Technique (RLT) by 
Sherali and Adams treats both discrete and continuous 
programming problems [5]. It is valuable for producing 
polyhedral outer approximations or LP relaxations for 
nonconvex polynomial programs having integral exponents for 
all nonlinear terms. RLT-LP relaxations of QP problems yield 
a lower bound on the global minimum [16][18]. New 
constraints and convex variables bounding types are introduced 
in [20][20] to obtain tighter lower bounds. The RLT procedure 
also benefits of various improvements of the implementation 
such as a range-reduction process, a constraint filtering 
technique, a new branching variable selection. Thus, filtering 
techniques have been proposed in [20] to accelerate the RLT 

                                                           
9 More generally, let ( ) ( )1 exp , 0i i i

n
if c x c== >∑x   . From the 

definition we deduce that ( ) ( ){ }*

1 sup exp
i

i i i i
x

n
if x y c x

∈
== −∑y



. Then 

we obtain ( ) ( )*

1 1log /i e i i i

nn
i if y y c y= =

= −∑ ∑y  for ∀y > 0 , 
i.e., the difference between the cross-entropy function and a linear function. 
10 The entropy is an index about disorder in a system (e.g., wasted energy). 
The negative entropy or negentropy refers to the quantity that is exported by 
the system to keep its own entropy at a lower level. 

search11. The relaxations are embedded in a convergent branch-
and-bound algorithm. 

A. Nonconvex Quadratic Programming Problem [10] 
Let a nonconvex quadratic programming problem (NQP) 

subject to linear equality constraints and box-constrained 
decision variables, such as 

( )
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where n∈x  , n∈c   and m∈b  . H  is an n n×  indefinite 
symmetric matrix, A  is the m n×  matrix of coefficients, and 
where the hyper-rectangle Ω  defines finite lower and upper 
bounds on the variables, with , 1, , .L U

j jx x j j< ∀ =    All the 
linear 2m n+  inequality constraints, can be expressed by 

1
, 1, , 2

n

i ik k ik
G x g i m n

=
≡ ≤ = +∑G x   . 

Rewriting the NQP problem we have 
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 (1) 

B. Reformulation-Linearization Technique 
The reformulation-linearization technique (RLT) consists 

in the two following phases, the reformulation and the 
convexification phases 

• In the reformulation phase, the constraints the 
constraints in (1) are replaced with a pairwise product 
such as ( )( ) 0, 1 2 .i i j jg g i j m n− − ≥ ≤ ≤ ≤ +G x G x      

• In the linearization/ convexification phase, each distinct 
quadratic term k lx x  for 1 k l n≤ ≤ ≤  is replaced by a 

new RLT variable klw . 

The RLT process yields the following LP relaxation of the 
NQP problem12 

                                                           
11 Reduced size RLT (rRLT) [21] applies to nonconvex QP problems. rRLTs 
are obtained by replacing quadratic terms with linear constraints. An 
extension of the rRLT is proposed in [22] to general polynomial programs. 
12 The linearization of [ ]. is denoted by [ ]. L

. 
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C. Branch-and-Bound Algorithm 
In the branch-and-bound procedure, a list of active nodes 

sq Q∈  is maintained at each stage s  of the algorithm. Each 
node q  corresponds to some partitioned hyperrectangle 

qΩ ⊆ Ω . The RLT algorithm to solve NQP consists in the 
following different steps [5], pp. 263-281 and [22], pp. 675-
683. 

• Step 0 : Initialization. Set { } ( )1, 1 , 1
s

s Q q s= = =   

and 1Ω ≡ Ω . Solve ( )1ΩLP  and get a solution 

( ),x w  for which the objective value is 

( )1

1LB = ΩLP . If x  is feasible to ( )ΩNQP , 

update 1x̂ = x  and ( )ˆ ˆ ˆ ˆ1 / 2T Tv = +c x x Hx . If 

1
ˆLB v= , then STOP. Otherwise, determine a 

branching variable px . The index p  is such that 

{ }arg max , 1, ,kp k nθ∈ =    

where 

( ){ }
( ){ }

2

1

max 0,

max 0, , 0

k kk k kk

n
kl k l kl kl

h x w

h x x w

θ

θ
=

≡ −

+ − >∑       
, 

for 1, ,k n=  . Then, GO TO STEP 1. 

• Step 1 : Partitioning. Partition the selected  active 
node ( )q sΩ  into two sub-hyperrectangles.  Denote the 
lower and upper bounds by ( )q sl  and ( )q su  
respectively. Then, the bounding interval 

( ) ( ),q s q s
p pl u   is divided for px  at a value px , say 
( ) ,q s

p pl x    and ( ), q s
p px u   . Replace ( )q s  by these 

two new nodes and revise sQ . 

• Step 2: Bounding. Solve the LP relaxation for each of 
the two nodes. Update the incumbent solution if 
possible. Determine a corresponding branching 
variable index, as in the initialization STEP 0. 

• Step 3: Fathoming. Fathom non improving nodes by 
setting { }1

ˆ:s s s qQ Q q Q LB vε
+
= − ∈ + ≥  where ε  

denote a positive tolerance13. If 1sQ
+
= ∅ , then STOP. 

Otherwise increment s  by one  and GO TO STEP 4. 

• Step 4: Node selection. Select an active node 
( ) { }arg min :q sq s LB q Q∈ ∈ . RETURN TO STEP 

1. 

IV. LMI RELAXATIONS 
Following the Shor’s LMI formulation, [23][24] use LMI 

relaxations for solving nonconvex optimization problems. A 
hierarchy of LMI relaxations of increasing dimensions 
generates a monotone converging sequence of lower bounds to 
the global optimal solution. This section introduces to the LMI 
feasibility sets, SDP formulation of SOS polynomials, and 
illustrates these notions with a simplified engineering 
application, in structural optimization. 

A. LMI Feasibility Sets 
A linear matrix inequality (LMI) is of the canonical 

negative definite form [25]-[27] 

( ) 0 1 1 0n nx x ,= + + +F x F F F   

where 0 1, , , nF F F  are symmetric m m×  matrices (i.e. 

0 , , 1, ,m

i i n∈ =F F =   ) and n∈x  .  

LMI is equivalent to semialgebraic sets of polynomial 
inequalities and equations. Converting an SDP to a 
semialgebraic set is illustrated as follows [28] 
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X X X=  (2) 

where ,x y ∈  are parameters. Determine the principal 
minors of X . Cone X  will satisfy (2) if and only if the 
parameters satisfy the polynomial inequalities14 
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 (3) 

The feasible set with curved faces (also called  spectrahedra) 
of x  and y  is shown in Fig. 3. 

                                                           
13 An exact desired optimum requires 0ε = . 
14 For a square n n×  matrix X , then X 0X  if and only if ( )det 0

k
>X  

for all 1, ,k n=  , where kX  denotes the k k×  principal minor 

submatrices. In the case of semidefinite X 0  the conditions include all the 
minors. 



The Shur complement is used to reformulate quadratic convex 
inequality into the LMI form. 

 
Fig. 3 . Example of a semialgebraic set. 

Lemma 1. Shur Complement. Let the Hermitian block matrix 
T

=
 
 
 

B C
A

C D
 be a symmetric matrix with k k×  block B  

and l l×  block D . Assume that B 0X  (i.e., positive definite). 
Then, we have A 0X , if and only if 1−−D CB C 0X . 

The LMI is equivalent to n  polynomial inequalities. In fact, 
( ) 0F x X  if and only if all its principal minors ( )km x  are 

positive. We have 

( )
( ) ( )

( ) ( )

11 1

1

det , 1, ,
k

k

k kk

F F

m k n

F F

= =

 
 
  
 

x x

x

x x



   



   

where ( )klF x  denotes the entry on k-th and l-th column of 

( )F x . 

B. SDP Formulation of SOS Polynomials 
Semidefinite programming (SDP) in polynomial 

optimization consists in approximating a hierarchy of convex 
semidefinite relaxations as in Shor [29]. These relaxations can 
be constructed by using an SOS representation of nonnegative 
polynomials and the dual theory of moments. Indeed, testing 
whether a polynomial is nonnegative can be reduced to the 
existence of an equivalent sum of squares (SOS) polynomial 
via semidefinite programming [30]. 

Definition 4. Let the multivariate polynomial be the 
following finite linear combination of monomials 

( ) 1

1 ,n

np c c x x cααα
α α α

α α

= ≡ ∈∑ ∑x x    , 

where ( )1 0, , ,n iα α α α= ∈  . Recall that the total degree of 

a monomial αx  is equal to 1 nα α+ +  and that the total 
degree of the polynomial is the maximum degree of its 
monomials15. 

Theorem 2. The existence of an SOS decomposition of a 
polynomial in n  variables of degree 2d , such as 

( ) ( )2

i
i

p q= ∑x x  can result from a semidefinite 

programming feasibility problem [30][31]. 

The cone of SOS polynomials has an LMI formulation. A 
polynomial of degree 2dα ≤  is SOS if and only if 

( ) with Tp , ,=x z Qz Q 0     

where z  contains all monomials with degree not greater than 
d . The Cholesky factorization yields TX = Q Q , such that 

( ) ( )2T T

i i
p = ∑x z L Lz = Lz . Then, we deduce that 

( )
( )

( )2
rank

1
i

i

p q
=

= ∑
X

x x . 

Example 5. Let the following quartic form [30] 

( ) 4 3 2 2 4

1 1 2 1 2 22 2 5p x x x x x x= + − +x , 

for which the monomial vector is ( )2 2

1 2 1 2, ,
T

x x x x=z . We have 

( )

( )

2 2

1 11 12 13 1

2 2

2 12 22 23 2

1 2 13 23 33 1 2

4 4 2 2

11 1 22 2 33 12 1 2

3 3

13 1 2 23 1 2

,

2

2 2 .

T
x q q q x

p x q q q x

x x q q q x x

q x q x q q x x

q x x q x x

=

= + + +

+ +

    
    
            

x

            

                                     

 

A positive semidefinite Q  that satisfies the linear equalities 

11 22 33 12 132, 5, 2 1, 2 2q q q q q= = + = − =          and 232 0q =  

is found by using SDP. A particular solution is 
2 3 1

2 3 11
3 5 0

0 1 32
1 0 5

T , =

−
−

= − =

 
  
     

 

Q L L L   . 

Therefore, we get the SOS decomposition 

                                                           
15 Special cases are homogeneous forms, where the monomials have the same 
total degree d . The polynomial is homogeneous of degree d , since 

( ) ( )dp pλ λ=x x . 



( ) ( ) ( )2 22 2 2

1 2 1 2 2 1 2

1
2 3 3

2
p x x x x x x x= − + + +x . 

C. Truss Topology Design 
A truss topology design (TTD) problem concerns a 

mechanical construction made up thin elastic bars linked to 
each other at nodes. The construction deforms under an 
external load until the tensions compensate the external forces. 
The goal is to design a truss of a given weight that best 
withstand the given weight. In other words, the compliance of 
the truss (i.e., potential energy resulting from the deformation) 
with regards to the load will be put as small as possible [25] 
pp. 21-29 and 227-247.16  

Suppose that TTD problem consists in N  bars of length 
N∈l   and cross-sections N∈x   for which lower and upper 

bounds are imposed, i.e., ≤ ≤a x b . Let v  be the total 
volume of the construction, we must have T v≤l x . Let f  the 
external forces and d  the node displacements. Let the 
semidefinite stiffness matrix A 0  be the following linear 
mapping ( ) 1 1 N Nx x= + +A x A A . At the static equilibrium 
of the construction loaded by f , we must have the nonlinear 
equality ( )A x d = f . The objective for the TTD problem 

being to minimize elastic stored energy Tf d  (i.e., maximize 
stiffness), the standard TTD optimization problem is 

 

[ ]

( )

( )

,
minimize

subject to :

N

T

T

,

v,

.

∈ ⊂

=

≤

x a b
f d

A x d f

l x

A x 0


    

 



 (4) 

To obtain an equivalent LMI problem, we have to operate 
the following successive transformations to (4): eliminate the 
equilibrium constraint with ( )1−=d A x f , place the objective 
to constraints with the auxiliary variable γ , and linearize with 
Schur lemma. We achieve the equivalent LMI formulation 

[ ]

( )

,
minimize

subject to :

N

T

T

v,

.

γ

γ

∈ ⊂

≤

 
 
 

x a b

l x

f
0

f A x
X


    

 

                                                           
16 The interests of SDP for structural design in engineering are presented and 
developed in [32], pp. 443-467. 

V. CONCLUSION: LAGRANGE AND SEMIDEFINITE 
RELAXATIONS 

Table … shows the links between the Lagrange and 
semidefinite relaxation. 

 
● Lagrange relaxation 

A 
Primal  
POP 
 

 C 
Lagrangian 
dual 

 
 

◄Semi-definite relaxation  
 

B 
Primal  
SDP 
 

 D 
Dual  
SDP 
 

● Duality theory 
 
Table … illustrates these links by using the binary QP 
programming problem. 
 



● Lagrange relaxation 

2

minimize

s.t. 1, 1, ,

T

i

n

x i n

∈

= =





x
x Qx






 

 

 ( ) ( )2minimize , 1T

i i

i

L y x −∑
x

x y x Qx +   

T=X x x  
 

◄   Semidefinite relaxation    ( )
1

diag , ,
n

y y=Y   
 

( )minimize tr

s.t. 1, 1, ,

n

ii

n

X i n

∈

= =







X

X 0

Q.X
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 ( )minimize tr

s.t. , 1, ,

n

n i n

∈

=





Y

Q - Y 0

Y
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● Duality theory 
 

VI. APPENDIX A - EXAMPLE TO THE RLT PROCESS 
 

A. Problem Formulation 

Let the following nonlinear quadratic problem (NQP)17 

2

2 2

1 1 2

1 2

1 2

: minimize 24

subject to :

- 3 4 24,

3 8 120,

x x x

x x

x x

∈Ω⊂
− −

+ ≤

+ ≤

x
NQP


    

 

 

          

 

where ( )1 2, Tx x=x and 1 1 2 2, ,L U L Ux x x xΩ ×      = . Using 
RLT, NQP is reformulated as the linearized LP: 

                                                           
17 Adapted from [22], p.683. 
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where ( )11 12 22, , Tw w w=w . The first ten linear constraints are 
the linearized bound factor pairwise inequalities. The next 
eight linear constraints are the linearized bound-constraint 
factor pairwise inequalities. The last three constraints are 
linearized constraint factor pairwise inequalities. 

B. Branch-and-Bound Resolution 
Suppose the following lower and upper bounds 

1 1 2 20, 24, 0, 15L U L Ux x x x= = = =    . Solving ( )1LP Ω , we obtain 

( ) ( )1 2 11 12 22
ˆ ˆ ˆ ˆ ˆ, , , , 8, 6,192, 48, 72x x w w w =  for which the 

objective value is ( )( )1 92v LP Ω = . The solution ( )ˆ 8, 6 Tx =  
is feasible to NQP and produces an objective value of 
ˆ 72v = − . At this stage, we can observe that 12 1 2

ˆ ˆ ˆw x x=  is true, 

whereas 2

11 1
ˆ ˆ192 64w x= ≠ =  and 2

22 1
ˆ ˆ72 36w x= ≠ =  both 

differ. Hence, we need to split the interval for 1x  at 1
ˆ 8x =  or 

for 2x  at 2
ˆ 6x = . 

Using the branching rule to decide, we obtain 
( ){ }1 max 0, 64 192 128θ = − − =  and 

( ){ }2 max 0, 36 72 36θ = − − = . Comparing the results, we 

select 1x  which achieves the best value. Then, we replace the 

interval 1Ω  with two sub-hyperrectangles 
[ ] [ ]{ }2

1 2: 0,8 , 0,15x xΩ = ∈ ∈x  and 

[ ] [ ]{ }3

1 2: 8, 24 , 0,15x xΩ = ∈ ∈x . Thereafter, using the 
same procedure, we obtain results for the other steps in TABLE 
1. We observe that the convergence is achieved at step 2 where 

( )( ) ( )( )2 3 *v LP v LP vΩ = Ω = . 
TABLE 1 SUCCESSIVE RELAXATIONS 

Relaxation 
#  

Decision and Lifting Variables Objective 
Functions 

1x  2x  11w  12w  22w  v  ( )#v  

( )1LP Ω  8 6 192 48 72 -72 92 

( )2LP Ω  0 6 0 0 36 -36 -36 

( )3LP Ω  24 6 576 144 36 -36 -36 

where [ ] [ ]1 0, 24 0,15Ω = × , [ ] [ ]2 0,8 0,15Ω = ×  and 

[ ] [ ]3 8, 24 0,15Ω = × . 
 

 

 
 
Fig. 1. Branch-and-bound decision tree. 

VII. APPENDIX B - SEMIDEFINITE PROGRAMMING 
TO QP PROBLEMS 

QP problems can be interpreted as SDP problems by using 
the Schur complements with regular and singular matrices. 
The QP problems are extended by considering an 
unconstrained QP, a bilinear QP and a single constraint QP18. 
The complexity of nonconvex quadratic problems is studied in 
[36]. It is shown that even one negative eigenvalue makes the 
problem NB hard. 

C. Unconstrained Quadratic Optimization Problem 
Let the unconstrained nonconvex QP be 

1
minimize

2n

T T r,
∈x

x Px + q x +


    

where n∈P = . For P 0X , the optimal value is 
( )* 11 / 2 Tp r−= − +q P q . More generally, we have 

( ) ( )†

* 1 / 2 , fοr 

, otherwise

T r
p

,

− + ∈
=

−∞





q P q P 0, q P     

  

 R
 

where †P  is the pseudo-inverse of P , and ( )PR  denotes 
the range of P . 

D. Bilinear Quadratic Optimization Problem 
Let the bilinear QP problem be 

 minimize 2 T T T T

n∈x
x Ax + y B x + y Cy


   (5) 

                                                           
18 This presentation is inspired from Boyd and Vandenberghe [33]. A large 
number of real-world applications , e.g., in engineering models, design and 
control can be QPs with a quadratic objective and a linear set of constraints. 
The properties of QPs and the different techniques for solving QPs are 
reviewed in [34]. The theory of nonconvex QP problems via SDPs is 
discussed in Nesterov et al. [35]. Lagrangian relaxations are used derive good 
approximate solutions. 



Suppose that we have a regular matrix A . The solution is 
1ˆ - −x = A By .  

The initial QP problem (5) is rewritten as 

inf
T

T

    
    
    x

x A B x

y B C y
   . 

The Schur complement of A  in the partitioned matrix is 
1T −= −S C B A B . Using the optimal expression for x , we find 

the optimal value 

( )* 1T Tp −= −y C B A B y . 
Suppose that we have a singular matrix A . If A 0  and the 
range condition19 ( )∈By AR , then the QP problem is 
solvable, and the optimal value for this problem is generalized 
as follows 

( )* †T Tp = −y C B A B y . 

E. Single Constraint Quadratic Optimization Problem 
Let the nonconvex QP be constrained with a quadratic 

inequality 

 

0 0 0

1 1 1

minimize 2

subject to :

2 0.

n

T T

T T

c

c

∈

≤

x
x A x +  b x +

x A x +  b x +


   

 (6) 

where ,n n

i i∈ ∈A b =   , and i ∈c   for 0,1i = . Since the 

quadratic terms T

ix A x  can be expressed as ( )tr TAxx , a new 

variable X  is defined by T=X xx . Relaxing this constraint by 
TX xx  and using the Schur complement, the QP problem (6) 

is now expressed as 
( )

( )

0 0 0

1 1 1

minimize tr

subject to :

tr 0,

1T

c

c

.

+

+ ≤

 
 
 

A X b x +

A X b x +

X x
0

x

   



 

The Lagrangian of problem (6) is 
( ) ( ) ( )0 1 0 1 0 1, 2T c cλ λ λ λ= + + + + +x x A A b b xL . 

The dual function is ( ) ( )inf ,g λ λ=
x

x    L , so that 

( )
( ) ( ) ( )

( )
0 1 0 1 0 1 0 1

0 1 0 1 0 1

,

for

, otherwise.

T
c c

g , R ,

λ λ λ λ

λ λ λ λ

+ − + + +

= + + ∈ +

−∞







b b A A b b

A A 0 b b A A           

   



  

The dual problem and its equivalent hypograph form are 

                                                           
19 The range condition is also given by ( )T

− =I AA By 0 . 
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Using the Schur complement of 0 1λ+A A , the dual 
problem is expressed as the following SDP 

( )
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