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Introduction

Il demeure des choses inconnues à partir des connaissances antérieures en probabilités :

� Qu'est-ce qu'un événement et l'ensemble de tous les événements ?

� Que se passe-t-il pour des probabilités d'événements moins classiques (par exemple l'ensemble
des décimaux) ?

� Comment traiter une variable aléatoire qui est continue et discrète à la fois (par exemple le
nombre de minutes passées devant la TV) ?

Rappels: Mesures

Tribus

Notation. � Ω est un ensemble (�ni ou in�ni).

� P(Ω) est l'ensemble de tous les sous-ensembles (parties) de Ω.

Rappel. Soit E un ensemble. E est dit dénombrable s'il existe une bijection entre E et IN ou
un sous-ensemble de IN. Par exemple, un ensemble �ni, ZZ, ID, ZZ × ZZ, Q


sont dénombrables. En

revanche, IR n'est pas dénombrable.

Dé�nition. Soit une famille F de parties de Ω (donc F ⊂ P(Ω)). On dit que F est une algèbre si:

� Ω ⊂ F ;

� lorsque A ∈ F alors (Ω \A) ∈ F ;

� pour tout n ∈ IN∗, lorsque (A1, · · · , An) ∈ Fn alors A1 ∪ · · · ∪An ∈ F .

Dé�nition. Soit une famille A de parties de Ω (donc A ⊂ P(Ω)). On dit que A est une tribu (ou
σ-algèbre) sur Ω si :

� Ω ⊂ F ;

� lorsque A ∈ F alors (Ω \A) ∈ F ;

� pour I ⊂ IN, lorsque (Ai)i∈I ∈ FI alors
⋃

i∈I Ai ∈ A.

Exemple.

� Cas du Pile ou Face.

� Cas où Ω est in�ni : Ω = IN par exemple.

Propriété. Avec les notations précédentes :

1. ∅ ∈ A;

2. si A et B sont dans la tribu A, alors A ∩B est dans A;

3. si A1 et A2 sont deux tribus sur Ω, alors A1 ∩ A2 est une tribu sur Ω . Plus généralement,

pour I ⊂ IN, si (Ai)i∈I ensemble de tribus sur Ω, alors
⋂

i∈I Ai est une tribu sur Ω;



Licence M.I.A.S.H.S. Troisième année: Statistique 2 4

4. si A1 et A2 sont deux tribus sur Ω, alors A1 ∪ A2 n'est pas forcément une tribu sur Ω.

Dé�nition. Si E est une famille de parties de Ω (donc E ⊂ P(Ω)), alors on appelle tribu engendrée
par E , notée σ(E), la tribu engendrée par l'intersection de toutes les tribus contenant E (on peut
faire la même chose avec des algèbres).

Remarque.

La tribu engendrée est la �plus petite� tribu (au sens de l'inclusion) contenant la famille E .

Rappel. � Un ensemble ouvert U dans un espace métrique X est telle que pour tout x ∈ U , il
existe r > 0 tel que B(x, r) ⊂ U .

� On dit qu'un ensemble dans un espace métrique X est fermé si son complémentaire dans X
est ouvert.

Dé�nition. Soit Ω un espace métrique. On appelle tribu borélienne sur Ω, notée, B(Ω), la tribu
engendrée par les ouverts de Ω. Un ensemble de B(Ω) est appelé borélien.

Exemple.

� Boréliens sur IR, sur ]0, 1[.

� Boréliens sur IR2.

Espace mesurable

Dé�nition. Soit Ω un ensemble et soit A une tribu sur Ω. On dit que (Ω,A) est un espace
mesurable.

Corollaire. Quand on s'intéressera aux probabilités, on dira que (Ω,A) est un espace probabilisable.

Propriété. Si (Ωi,Ai)i sont n espaces mesurables, alors un ensemble élémentaire de Ω = Ω1×· · ·×
Ωn est une réunion �nie d'ensembles A1 × · · · × An où chaque Ai ∈ Ai. L'ensemble des ensembles

élémentaires est une algèbre et on note A1 ⊗ · · · ⊗ An (on dit A1 tensoriel A2 ... tensoriel An) la

tribu sur Ω engendrée par ces ensembles élémentaires.

Exemple.

Pavés de IRd.

Dé�nition. On appelle espace mesurable produit des (Ωi,Ai)i l'espace mesurable

(
n∏

i=1

Ωi,
n⊗

i=1

Ai

)
.

Exemple.

Pile / Face 2 fois.
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Dé�nitions et Propriétés d'une mesure

Dé�nition. Soit (Ω,A) un espace mesurable. L'application µ : A → [0,+∞] est une mesure si :

� µ(∅) = 0.

� Pour tout I ⊂ IN et pour (Ai)i∈I famille disjointe de A (telle que Ai ∪ Aj = ∅ pour i ̸= j),

alors µ

(⋃
i∈I

Ai

)
=
∑
i∈I

µ(Ai) (propriété dite de σ-additivité).

Dé�nition. Avec les notations précédentes :

� Si µ(Ω) < +∞, on dit que µ est �nie.

� Si µ(Ω) < M avec M < +∞, on dit que µ est bornée.

� Si µ(Ω) = 1, on dit que µ est une mesure de probabilité.

Exemple.

Cas de Ω = IR, de IN, ou IR2.

Dé�nition. Si (Ω,A) est un espace mesurable (resp. probabilisable) alors (Ω,A, µ) est un espace
mesuré (resp. probabilisé quand µ est une probabilité).

Remarque.

Sur (Ω,A), on peut dé�nir une in�nité de mesures.

Propriété. Soit (Ω,A, µ) un espace mesuré et (Ai)i∈IN, une famille de A.

1. Si A1 ⊂ A2, alors µ(A1) ≤ µ(A2).

2. Si µ(A1) < +∞ et µ(A2) < +∞, alors µ(A1 ∪A2) + µ(A1 ∩A2) = µ(A1) + µ(A2).

3. Pour tout I ⊂ IN, on a µ

(⋃
i∈I

Ai

)
≤
∑
i∈I

µ(Ai).

4. Si Ai ⊂ Ai+1 pour tout i ∈ IN (suite croissante en sens de l'inclusion), alors (µ(An))n∈IN est

une suite croissante convergente telle que

µ

(⋃
i∈IN

Ai

)
= lim

i→+∞
µ(Ai) (même si cette limite est +∞).

5. Si Ai+1 ⊂ Ai pour tout i ∈ IN (suite décroissante en sens de l'inclusion) et µ(A0) < +∞,

alors (µ(An))n∈IN est une suite décroissante convergente telle que µ

(⋂
i∈IN

Ai

)
= lim

i→+∞
µ(Ai).

Exemple.

1. Soit (Ω,A, µ) un espace mesuré. On dé�nit ν(A) = µ(A ∩B) où B ∈ A. ν mesure ?

2. Si µ1 et µ2 mesures sur (Ω,A), µ1 + µ2 et αµ sont-elles des mesures ?

Dé�nition. Soit (Ω,A, µ) un espace mesuré et (Ai)i∈IN une famille de A.
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1. On dé�nit lim sup(An)n =
⋂
n∈IN

⋃
m≥n

Am (intuitivement, lim sup(An)n est l'ensemble des ω ∈ Ω

tels que ω appartienne à une in�nité de An).

2. On dé�nit lim inf(An)n =
⋃
n∈IN

⋂
m≥n

Am (intuitivement, lim inf(An)n est l'ensemble des ω ∈ Ω

tels que ω appartienne à tous les An sauf à un nombre �ni d'entre eux).

Exemple.

Cas des suites croissantes et décroissantes d'ensembles.

Théorème (Théorème d'extension de Hahn - Caratheodory). Si Ω est un ensemble, F une algèbre

sur Ω, et ν une application de F dans [0,+∞] additive (telle que ν(A ∪ B) = ν(A) + ν(B) pour

A ∪ B = ∅), alors si A est la tribu engendrée par F , il existe une mesure ν̂ sur la tribu A qui

coïncide avec ν sur F (c'est-à-dire que pour tout F ∈ F , ν̂(F ) = ν(F )). On dit que ν̂ prolonge ν
sur la tribu A.

Exemple.

Dé�nition de la mesure de Lebesgue sur IR, IRn,...

Dé�nition. Soit (Ω,A, µ) un espace mesuré.

1. Pour A ∈ A, on dit que A est µ-négligeable si µ(A) = 0.

2. Soit une propriété P dépendant des éléments ω de Ω. On dit que P est vraie µ-presque partout
(µ-presque sûrement sur un espace probabilisé) si l'ensemble des ω pour laquelle elle n'est pas
véri�ée est µ-négligeable.

Exemple.

� Mesure de Lebesgue sur IN ou Q

.

� La propriété � la suite de fonction fn(x) = xn converge vers la fonction f(x) = 0� est vraie
λ-presque partout sur [0, 1].

� Soit (IR,B(IR), µ) et soit F la fonction dé�nie par F (x) = µ(]−∞, x]) pour x ∈ IR.

Fonctions mesurables

Rappel. Soit f : E 7→ F , où E et F sont 2 espaces métriques.

� Pour I ⊂ F , on appelle ensemble réciproque de I par f , l'ensemble f−1(I) = {x ∈ E, f(x) ∈
I}.

� (f continue) ⇐⇒ (pour tout ouvert U de F alors f−1(U) est un ouvert de E).

Dé�nition. Soit f : E 7→ F et soit I une tribu sur F . On note f−1(I) l'ensemble de sous-ensembles
de Ω tel que f−1(I) = {f−1(I), I ∈ I}.

Propriété. Soit (Ω′,A′) un espace mesurable et soit f : Ω 7→ Ω′. Alors f−1(A) est une tribu sur

Ω appelée tribu engendrée par f .
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Dé�nition. Soit (Ω,A) et (Ω′,A′) deux espaces mesurables. Une fonction f : Ω 7→ Ω′ est dite
mesurable pour les tribus A et A′ si et seulement si f−1(A′) ⊂ A (donc si et seulement si ∀A′ ∈ A′,
alors f−1(A′) ∈ A).

Exemple.

� Fonction indicatrice.

� Combinaison linéaire de fonctions indicatrices.

Remarque.

Dans le cas où (Ω,A) est un espace probabilisable, et si f : Ω 7→ IR, alors si f est une fonction
mesurable sur A et B(IR), alors f est une variable aléatoire.

Exemple.

Nombre de Piles dans un jeu de Pile/Face.

Remarque.

Dans le cas où (Ω,A) est un espace mesurable, et si f : Ω 7→ (Ω′,B(Ω′)), où Ω′ est un espace
métrique et B(Ω′) l'ensemble des boréliens de Ω′, si f est une fonction mesurable sur A et B(Ω′),
alors f est dite fonction borélienne.

Proposition. Soit (Ω,A) et (Ω′,A′) deux espaces mesurables et f : Ω 7→ Ω′. Soit F une famille de

sous-ensembles de Ω′ telle que σ(F) = A′. Alors

1. f−1(F) engendre la tribu f−1(A).

2. (f mesurable) ⇐⇒ (f−1(F) ⊂ A)

Conséquence. � Si (Ω,A) et (Ω′,A′) sont deux espaces mesurables boréliens, alors toute ap-
plication continue de Ω 7→ Ω′ est mesurable.

� Pour montrer qu'une fonction f : Ω 7→ IR est mesurable, il su�t de montrer que la famille
d'ensemble ({ω ∈ Ω, f(ω) ≤ a})a∈IR ∈ A.

Propriété. � Soit f mesurable de (Ω,A) dans (Ω′,A′) et g mesurable de (Ω′,A′) dans (Ω′′,A′′).
Alors g0f est mesurable dans A et A′.

� Soit f1 mesurable de (Ω,A) dans (Ω1,A1) et f2 mesurable de (Ω,A) dans (Ω2,A2). Alors

h : Ω 7→ Ω1 × Ω2 telle que h(ω) = (f1(ω), f2(ω)) est mesurable dans A et A1 ⊗A2.

� Soit (fn)n∈IN une suite de fonctions mesurables de (Ω,A) dans (Ω′,B(Ω′)), où Ω′ est un espace

métrique, telle qu'il existe une fonction f limite simple de (fn) (donc ∀ω ∈ Ω, lim
n→∞

fn(ω) = f(ω)).

Alors f est mesurable dans A et B(Ω′).

Dé�nition. Soit f mesurable de (Ω,A, µ) dans (Ω′,A′) et soit µf : A′ 7→ [0,+∞] telle que pour
tout A′ ∈ A′, on ait µf (A

′) = µ(f−1(A′)). Alors µf est une mesure sur (Ω′,A′) appelée mesure
image de µ par f .

Cas particulier.

Si µ est une mesure de probabilité et si X est une variable aléatoire alors µX est la mesure (loi)
de probabilité de la variable aléatoire X.
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Cas des fonctions réelles mesurables

Propriété. Soit f et g deux fonctions réelles mesurables (de (Ω,A, µ) dans (IR,B(IR))). Alors α.f ,
f + g, min(f, g) et max(f, g) sont des fonctions réelles mesurables.

Propriété. Soit (fn)n∈IN une suite de fonctions réelles mesurables. Alors inf(fn) et sup(fn) sont

des fonctions réelles mesurables.

Dé�nition. Soit f : Ω → IR. Alors f est dite étagée s'il existe une famille d'ensembles disjoints

(Ai)1≤i≤n de Ω et une famille de réels (αi)1≤i≤n telles que pour tout ω ∈ Ω, on ait f(ω) =
n∑

i=1

αiIIAi(ω).

Remarque.

Si les Ai sont tous dans A tribu sur Ω, alors f est A-mesurable.

Théorème. Toute fonction réelle mesurable à valeurs dans [0,+∞] est limite simple d'une suite

croissante de fonctions étagées.

Conséquence. Soit f une fonction réelle mesurable. Alors f est limite simple de fonctions étagées.

Intégration de Lebesgue

Dans toute la suite, on considère (Ω,A, µ) un espace mesuré.

Intégrale de Lebesgue d'une fonction positive

Dé�nition. 1. Soit f = IIa, où A ∈ A. Alors :∫
f dµ =

∫
ω
f(ω)dµ(ω) = µ(A).

2. Soit f = IIa, où A ∈ A et soit B ∈ A. Alors :∫
B
f dµ =

∫
B
f(ω)dµ(ω) =

∫
IIBµ(A)(ω)f(ω)dµ(ω) = µ(A ∩B).

3. Soit f une fonction étagée positive telle que f =
n∑

i=1

αiIIAi , où les Ai ∈ A et αi > 0 et soit

B ∈ A. Alors :∫
B
f dµ =

∫
B
f(ω)dµ(ω) =

∫
IIB(ω)f(ω)dµ(ω) =

n∑
i=1

αiµ(Ai ∩B).

Exemple.

Fonction IIQ
 , fonctions en escalier,...

Dé�nition. Soit f une fonction A-mesurable positive et soit B ∈ A. Alors l'intégrale de Lebesgue
de f par rapport à µ sur B est :∫

B
f dµ =

∫
IIB(ω)f(ω)dµ(ω) = sup

{∫
B
g dµ, pour g étagée positive telle que g ≤ f

}
.

Propriété. Soit f une fonction A-mesurable positive et soit A et B ∈ A. Alors :
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1. Pour c ≥ 0,

∫
B
cf dµ = c

∫
B
f dµ.

2. Si A ⊂ B, alors

∫
A
f dµ ≤

∫
B
f dµ.

3. Si g est une fonction A-mesurable positive telle que 0 ≤ f ≤ g alors 0 ≤
∫
B
f dµ ≤

∫
B
g dµ.

4. Si µ(B) = 0 alors

∫
B
f dµ = 0.

Théorème (Théorème de convergence monotone (Beppo-Lévi)). Si (fn)n est une suite croissante

de fonctions mesurables positives convergeant simplement vers f sur Ω, alors :

lim
n→∞

(∫
fndµ

)
=

∫
f dµ =

∫
lim
n→∞

fndµ.

Conséquence. Pour les séries de fonctions mesurables positives, on peut toujours appliquer le
Théorème de convergence monotone et donc inverser la somme et l'intégrale.

Lemme (Lemme de Fatou). Soit (fn)n est une suite de fonctions mesurables positives alors :∫ (
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
fndµ.

Exemple.

Appliquer Fatou à (fn) telle que f2n = IIA et f2n+1 = IIB.

Intégrale de Lebesgue d'une fonction réelle et propriétés

Dé�nition. Soit (Ω,A, µ) un espace mesuré, B ∈ A et soit f une fonction A-mesurable à valeurs
réelles telle que f = f+−f− avec f+ = max(f, 0) et f− = max(−f, 0). On dit que f est µ-intégrable

sur B si

∫
B
|f | dµ < +∞. On a alors

∫
B
f dµ =

∫
B
f+ dµ−

∫
B
f− dµ.

Notation. Lorsque f est µ-intégrable sur B, soit

∫
|f | dµ < +∞, on note f ∈ L1(Ω,A, µ) (on dit

que f est L1).

Exemple.

Intégrale de Riemann et intégrale de Lebesgue.
Cas de la masse de Dirac.

Propriété. On suppose que f et g ∈ L1(Ω,A, µ). Alors :

1.

∫
(αf + βg)dµ = α

∫
fdµ+ β

∫
gdµ pour (α, β) ∈ IR2.

2. Si f ≤ g alors

∫
f dµ ≤

∫
g dµ.
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Théorème (Théorème de convergence dominée de Lebesgue). Soit (fn)n est une suite de fonctions

de L1(Ω,A, µ) telles que pour tout n ∈ IN, |fn| ≤ g avec g ∈ L1(Ω,A, µ). Si on suppose que (fn)
converge simplement vers f sur Ω alors :

lim
n→∞

∫
fndµ =

∫
f dµ.

Extension.

Le Théorème de Lebesgue s'applique également dans le cas où (fn)n converge presque partout
vers f .

Exemple.

Convergence d'intégrale dépendant d'un paramètre : par exemple

∫ ∞

0

f(x)

1 + xn
dx.

Théorème (Inégalité de Jensen). Soit (Ω,A, IP) un espace probabilisé, soit ϕ : IR 7→ IR une fonction

convexe et soit f : Ω 7→ IR mesurable telle que ϕ(f) soit une fonction intégrable par rapport à P .

Alors :

ϕ

(∫
f dP

)
≤
∫

ϕ(f) dP.

Exemple.

Soit X une v.a. sur (Ω,A, IP). Alors ϕ (IE[X]) ≤ IE (ϕ(X)).

Mesures induites et densités

Théorème (Théorème du Transport). Soit f une fonction mesurable de (Ω,A, µ) dans (Ω′,A′)
telle que µf soit la mesure induite par f (donc µf (A

′) = µ(f−1(A′)) pour A′ ∈ A′) et soit ϕ une

fonction mesurable de (Ω′,A′) dans (IR,B(IR)). Alors, si ϕ0f ∈ L1(Ω,A, µ),∫
Ω′

ϕdµf =

∫
Ω
ϕ0f dµ.

Dé�nition. Soit µ et ν deux mesures sur (Ω,A). On dit que µ domine ν (ou ν est dominée par µ)
et que ν est absolument continue par rapport à µ lorsque pour tout A ∈ A, µ(A) = 0 =⇒ ν(A) = 0.

Propriété. Soit (Ω,A, µ) un espace mesuré et f une fonction dé�nie sur (Ω,A) mesurable et

positive. On suppose que pour A ∈ A, ν(A) =

∫
A
f dµ. Alors, ν est une mesure sur (Ω,A), dominée

par µ. De plus, pour toute fonction g dé�nie sur (Ω,A) mesurable et positive,∫
gdν =

∫
g.fdµ.

En�n, g est ν intégrable si et seulement si g.f est µ intégrable.

Dé�nition. On dit que µ mesure sur (Ω,A) est σ-�nie lorsqu'il existe une famille (Ai)i∈I , avec I
dénombrable, d'ensembles de A telle que

⋃
Ai = Ω et µ(Ai) < +∞ pour tout i ∈ I.

Théorème (Théorème de Radon-Nikodym). On suppose que µ et ν sont deux mesures σ-�nies sur

(Ω,A) telles que µ domine ν. Alors il existe une fonction f dé�nie sur (Ω,A) mesurable et positive,

appelée densité de ν par rapport à µ, telle que pour tout A ∈ A, ν(A) =

∫
A
f dµ.

Théorème (Théorème de Fubini). Soit Ω = Ω1 × Ω2, A = A1 ⊗ A2 et µ = µ1 ⊗ µ2 (mesures σ
�nies), où (Ω1,A1, µ1) et (Ω2,A2, µ2) sont des espaces mesurés. Soit une fonction f : Ω 7→ IR,

A-mesurable et µ-intégrable. alors :∫
Ω
fdµ =

∫
Ω1

(∫
Ω2

f(ω1, ω2)dµ2(ω2)

)
dµ1(ω1) =

∫
Ω2

(∫
Ω1

f(ω1, ω2)dµ1(ω1)

)
dµ2(ω2).
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Espaces Lp

Dé�nition. Soit (Ω,A, µ) un espace mesuré. On appelle espace Lp(Ω,A, µ), où p > 0, l'ensemble
des fonctions f : Ω 7→ IR, mesurables et telles que

∫
|f |pdµ < +∞.

Dé�nition. Pour f ∈ Lp(Ω,A, µ), où p > 0, on note ∥ f ∥p=
(∫

|f |pdµ
)1/p

.

Propriété (Inégalité de Hölder). Soit p > 1 et q > 1 tels que
1

p
+

1

q
= 1, et soit f ∈ Lp(Ω,A, µ) et

g ∈ Lq(Ω,A, µ). Alors, f g ∈ L1(Ω,A, µ) et

∥ f g ∥1≤∥ f ∥p . ∥ g ∥q .

Propriété (Inégalité de Minkowski). Soit p > 1 et soit f et g ∈ Lp(Ω,A, µ). Alors, f + g ∈
Lp(Ω,A, µ) et

∥ f + g ∥p≤∥ f ∥p + ∥ g ∥p .

Remarque.

Pour p > 1, ∥ . ∥p dé�nie ainsi sur une semi-norme sur Lp(Ω,A, µ). Pour obtenir une norme,
il faut se placer dans l'espace ILp(Ω,A, µ) obtenu en �quotientant� Lp(Ω,A, µ) par la relation
d'équivalence f = g µ-presque partout (c'est-à-dire que dans ILp(Ω,A, µ) on dira que f = g lorsque
f = g µ-presque partout).

Dé�nition. Pour f et g ∈ IL2(Ω,A, µ), on dé�nit le produit scalaire < f, g >=

∫
f.g dµ. On muni

ainsi IL2(Ω,A, µ) d'une structure d'espace de Hilbert. On dira que f est orthogonale à g lorsque
< f, g >= 0.

Conséquence. Si A est un sous-espace vectoriel fermé de IL2(Ω,A, µ) (par exemple un sous-espace
de dimension �nie), alors pour tout f ∈ IL2(Ω,A, µ), il existe un unique projeté orthogonal de f
sur A, noté fA, qui véri�e fA = Arginf

g∈A
∥ g − f ∥2.


