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Abstract: Genetic stochastic search algorithms (GAs) have soon demonstrated their helpful contribution in finding
solutions to the complex real-life optimization problems. In 2005, Mastorakis’ method successfully combines the
GAs with the Nelder-Mead (NM) simplex optimization technique: the GAs are used first to reach the neighborhood
of some global extremum, and the NM algorithm then finds it exactly. Playing games with genetic algorithms has
been already proposed: it is a means of seeking better strategies in playing repeated games. These algorithms have
been applied extensively for solving Nash equilibria of fuzzy bimatrix games with single objective. The experience
shows the ability of the GAs to find solutions to equivalent quadratic programming problems without an exhaustive
search. This paper is an attempt to consider the complexity of the real situations, when the decision makers are
facing to multiple simultaneous objectives in a fuzzy environment. The software MATHEMATICA 7.0.1 is used to
implement these techniques in a high-performance computing environment.
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1 Introduction to Evolutionary Opti-
mization

Evolutionary methods have proved their helpfull as-
sistance to complex real-life problems such as with
nonlinear bounded optimization problems and decen-
tralized planning systems.

1.1 Bounded Optimization Problems
Let a nonlinear bounded programming problem

min f(x), x ∈ Rn

s.t. x ∈ [xl, xu].

A multimodal example with bounds may be deduced
from a weighted combination of two sinc functions
g(x, y) = 3f(x+10, y+10)+2f(x−5, y+5), x, y ∈
[−20, 10] where

f(x, y) = 50
sin(

√
x2 + y2)√

x2 + y2
−

√
x2 + y2.

The hybridation of GA and classical optimization
method is proposed [35] to find the global optimiza-
tion solution : the GA is used first with a small num-
ber of iterations, and second the Newton’s method for
local optimization is used in this neighbourhood of
the solution. The real-valued GA consists in Math-
ematica routines: a population of chromosomes is

Figure 1: GA iterations



created randomly and the genetic processes of se-
lection, crossover and mutation are then used for
each iteration 1. The GA is ended after an arbitrary
10 iterations calculation. The best result we obtain
is (x̂, ŷ) = (−9.17265,−9.71843). The exact so-
lution of the global optimization problem being at
(x∗, y∗) = −9.898,−9.966), the error of the GA
10 iterations approximation is (x∗ − x̂, y∗ − ŷ) =
(−.052682,−.247571). The exact optimization is
then reached 2 by using the Mathematica primitive for
local maximization

FindMaximum[f [x, y], {{x, x̂}, {y, ŷ}},
Method → ”Gradient”].

1.2 Constrained Optimization Problems
Let the standard nonlinear programming problem with
n bounds,p inequality constraints, and m− p equality
constraints be [?, 36]

min
x

f(x), x ∈ Rn

subject to:

gix) ≤ 0, i = 1, . . . , p,

hix) = 0, i = p + 1, . . . ,m,

x ∈ [xl, xu],

where f, gi, hi : Rn 7→ R are respectively the
cost function, the inequality and the equality con-
straint, and where x is the vector of n optimization

1The Mathematica notebook consists in modules such as in
the appendix A: 1- the module createPopulation[nSize]
randomly constructs a population of nSize chromo-
somes and renders separately the values of (x, y)
in initialPopulation and the fitness in fitList, 2-
rankPopulation[initialPopulation, fitList, pSize] sorts the
chromosomes according to their fitness, 3- the selection process
uses selectPopulation[..., keepRate], rankWeighting[...] and
selectPairing[...], 4- the crossover process is using crossOver[...]
to get two offspring for each mating parent, and 5- the muta-
tion process is using mutatePopulation[..., mutationRate],
fitMatingPopulation[...], fitMutatedPopulation[...].

2For this example, the global optimization may use the Mathe-
matica primitive for the Nelder-Meade variable simplex algorithm

NMaximize[{f [x, y], xl ≤ x ≤ xu, yl ≤ y ≤ yu}, {x, y},
Method → ”NelderMead”].

Using the Mathematica extra package
Optimization‘UnconstrainedProblems‘, the primitive
FindMinimumPlot[−f [x, y], {{x, x̂}, {y, ŷ}}, Method →
”Newton] shows a 4 steps path between the best and the exact
solutions.

Figure 2: Iterative gradient method

variables. The search space S ⊆ Rn is defined by
the lower bounds xl and upper bounds xu of the vari-
ables x. It is represented by the q-dimensional rectan-
gle S =

∏q
substacki=1[x

l
i, x

u
i ], q ≤ n. For this prob-

lem, the set F ⊆ S of feasible points is defined by m
constraints such that

dom F =
p⋂

i=1

dom gi ∩
m⋂

i=p+1

dom hi.

It is included in the search space S defined . We have
x ∈ F ⊆ S ⊆ Rn. Genetic algorithms may introduce
penalty function which penalize infeasible solutions
[36] , such as

fp(x) = f(x) +
m∑

i=1

Cid
κ
i ,

with

di =

{
δigi(x), i = 1, . . . , p,

|hi(x)|, i = p + 1, . . . ,m.

where fp(x) denotes the penalized objective function,
Ci a nonzero constant for violation of constraint i, di

the distance metric of constraint i and κ a user defined
parameter. The lagrangian for this problem is defined
as

L(x, λ, µ) = f(x) +
p∑

i=1

λigi(x) +
m∑

i=p+1

µihi(x),



where ~λ, ~µ denote the dual variables associated to the
constraints.

The GA-based GENOCOP III package (see ap-
pendix B) is used for solving the following numerical
nonlinear example

min
x,y

f(x, y) = x2 + 9y2, x, y ∈ R

subject to:

g1(x, y) ≡ −2xy + 1 ≤ 0,

g2(x, y) ≡ −x− 3y + 1 ≤ 0,

g3(x, y) ≡ (x + 3)2 + 3(y + 1)2 − 25 ≤ 0,

x ∈ [−1., 2.], y ∈ [−.5, 1.5].

The best solution (x̂, ŷ) = (.500091; .166636) with
f(x̂, ŷ) = .5 by GA is close to the exact optimum
(x∗, y∗) = (.5, .16666) at iteration 100 (see the illus-
tration appendix B).

1.3 Multiple Objectives Optimization Prob-
lems

A multiobjective optimization problem (MOP) states
that the decision variables x optimize a vector func-
tion of objective functions f(x) = (f1(x), . . . , fk(x))
subject to constaints variable bounds for x. The MOP
may be written

min
x

f(x) =
(
f1(x), . . . , fk(x)

)
, x ∈ Rn

subject to:

gi(x) ≤ 0, i = 1, . . . , p,

hi(x) = 0, i = p + 1, . . . ,m,

x ∈ [xl, xu].

Definition 1 (Pareto optimality). Let F be the set
of numbers which satifies the constraints, a point
x∗ ∈ F is Pareto optimal if for every x ∈ F either∧

i∈Nk
fi(x) = fi(x∗) or there is at least one i ∈ Nk

such that fi(x) > fi(x).

1.4 Nested Optimization Problems
A bilevel programming problem (BLP) is concerning
a hierachical decision system with two levels. At the
lower decision level the decision maker (the follower)
try to optimize its own objective function under the
given decision pattern of a DM at the upper level (the
leader). This Stackelberg situation may be illustrated

Figure 3: Feasible space and Pareto space

by the following BLP

min
x

F (x, y), x ∈ Rn1

subject to:

G(x, y) ≤ 0,

min
y

f(x, y), y ∈ Rn2

subject to: g(x, y) ≤ 0,

where the objective functions of the leader and the fol-
lower are respectively F, f : Rn1 ×Rn2 7→ R with re-
spective constraints defined by G : Rn1 × Rn2 7→ Rp

and g : Rn1 × Rn2 7→ Rq. The problem is tran-
formed into a single level problem, by replacing the
lower level programming with its Kuhn-Tucker (K-T)
conditions. We have

min
x,y,u

F (x, y), x ∈ Rn1

subject to:

G(x, y) ≤ 0,

∇yf(x, y) + u′∇yg(x, y) = 0

u′g(x, y) = 0,

g(x, y) ≤ 0,

u ≥ 0,

where u ∈ Rq denotes a vector of K-T multipliers.
The following example is drawn from [1]. The BLP is
defined by

min
x

F (x, y) = x− 4y, x ∈ R

subject to:

min
y

f(y) = y, y ∈ R

subject to: g1(x, y) ≡ −x− y + 3 ≤ 0,

g2(x, y) ≡ −2x + y ≤ 0,

g3(x, y) ≡ 2x + y − 12 ≤ 0,

g4(x, y) ≡ −3x + 2y + 4 ≤ 0,

x ≥ 0, y ≥ 0.



Figure 4: BLP example

The constraint region S is defined by S , {(x, y)|x ∈
X, y ∈ Y, gi(x, y) ≤ 0, i = 1, 4}(Fig.4). The
feasible set for the follower for each fixed x̄ ∈ X
is S(x) , {y ∈ Y |gi(x̄, y) ≤ 0}. For x̄ = 3, the
feasible segment is shown in Fig4. The projection of
S onto the leader decision space is S(X) , {x ∈
X, ∃y ∈ Y |gi(x, y ≤ 0, i = 1, 4}. The follower’s
rational reaction set for x ∈ S(X) is P (x) , {y ∈
Y |y arg max f(x, ŷ)|ŷ ∈ S(x)}. The inductible re-
gion (IR)is IR , {(x, y)|(x, y) ∈ S, y ∈ P (x)}
(see the solid curve in Fig.4). Replacing the K-T con-
ditions of the follower’s problem, the BLP is trans-
formed into a single-level programming problem. The
lagrangian of the follower’s problem is

L(x0, y, ~λ, β) ≡ f(y) +
4∑

i=1

λigi(x0, y)− βy,

where ~λ = {λ1, λ2, λ3, λ4}. We have the problem

min
x,y,~λ,α,β

F (x, y), x ∈ R

subject to:

∇yL(x0, y, ~λ, β) = 0,

λigi(x, y) = 0, i = 1, 4

gi(x, y) ≤ 0, i = 1, 4

α x = 0, β y = 0

x ≥ 0, y ≥ 0, λi ≥ 0, i = 1, 4, α ≥ 0, β ≥ 0.

For this problem, the Stackelberg solution is
(x∗, y∗) = (4, 4) with the objectives of F (x∗, y∗) =

−12 for the leader and f(y∗) = 4 for the follower
(see point X3 in Fig.??. A local optimum is reached
at (x∗, y∗) = (1, 2) with a better objective f(1, 2) = 2
for the follower but a worse objective F (1, 2) = −7
for the leader.

2 Single Objective Fuzzy Matrix
Games Using Genetic Algorithms

2.1 Single Objective Fuzzy Matrix Games
Two players I and II have mixed strategies given by
the n-dimensional vector x and the m-dimensional
vector y, respectively. Let en be an n-dimensional
vector of ones, em having a dimension m. Suppose
that the strategy spaces of Player I and II are defined
by the convex polytopes Sm = {x ∈ Rm

+ , x′em = 1}
and Sn = {y ∈ Rn

+, y′en = 1}, respectively. The
payoffs of Players I and II are the m × n matri-
ces A and B, respectively. The objectives of Player
I and Player II will be the programming problems
{maxx x′Ay subject to x′em = 1, x ≥ 0}, and
{maxy x′By subject to y′en = 1, y ≥ 0}, respec-
tively. The expected payoffs of Players I and II are
E1(x, y) = x′Ay and E2(x, y) = x′By, respectively.
Playing safe, the two players will select the strategy
for which the maximum losses are minimum.

Definition 2 A Nash equilibrium point is a pair of
strategies (x∗, y∗) such that the objectives of the two
players are full filled simultaneously. We have

x′∗Ay∗ = max
x
{x′Ay∗| x′em = 1, x ≥ 0}

x′∗By∗ = max
y
{x′∗By| y′en = 1, y ≥ 0}

Applying the Kuhn-Tucker necessary and sufficient
conditions, we have the Equivalence Theorem 3.

Theorem 3 (Mangasarian and Stone (1964)[?])
(Equivalence Theorem) Let G = (Sm, Sn, A, B) be a
bimatrix game, a necessary and sufficient condition
that (x∗, y∗) be an equilibrium point is the solution of
the QP problem

max
x,y,p,q

x’(A + B)y− p− q

subject to
Ay ≤ pen,

B′x ≤ qem,

x′em = 1,

y′en = 1,

x ≥ 0, y ≥ 0,

where p, q ∈ R are the negative of the multipliers as-
sociated with the constraints.



Proof: see appendix ??. ut
The Lemke-Howson ’s algorithm (1964) [?, ?, ?] can
be used when computing the Nash equilibrium pay-
offs.

Definition 4 Let the expected payoff of Player I be
D1 = {x′Ay| x ∈ Sm, y ∈ Sn}. A fuzzy goal for
Player I is a fuzzy set G̃1 represented by the member-
ship function (MF) µ1 : D1 7→ [0, 1].

Definition 5 Let the expected payoff of Player II be
D2 = {x′By| x ∈ Sm, y ∈ Sn}. A fuzzy goal for
Player II is similarly a fuzzy set G̃2 represented by the
MF µ2 : D2 7→ [0, 1].

An equilibrium solution is defined with respect to
(w.r.t.) the degree of attainment of the fuzzy goals.

Definition 6 A pair (x∗, y∗) ∈ Sm × Sn is an equi-
librium solution if, for other strategies,we have

µ1(x′∗A y∗) ≥ µ1(x′Ay∗), for all x ∈ Sm

µ2(x′∗By∗) ≥ µ2(x′∗By), for all y ∈ Sn

The expression of the linear MF of the fuzzy goal G̃1

for Player I is

µ1(x′Ay) =


1, x′Ay ≥ ā
x′Ay−a

ā−a , a < x′Ay < ā

0, x′Ay ≤ a,

where a denotes the worst degree of satisfaction of
Player I, whereas ā denotes the best degree of satis-
faction. These values are defined as

a = min
x∈X

min
y∈Y

x′Ay = min
i

min
j

aij

ā = max
x∈X

max
y∈Y

x′Ay = max
i

max
j

aij

The expression of the linear MF of the fuzzy goal G̃2

for Player II is, as well

µ2(x′By) =


1, x′By ≥ b̄
x′By−b

b̄−b
, b < x′By < b̄

0, x′By ≤ b,

where b and b̄ also denote the worst and the best de-
gree of satisfaction of Player II, respectively. These
values are deduced from similarly using B.

Theorem 7 (Equilibrium solution) An equilibrium
solution (x∗, y∗) of the fuzzy bimatrix game, is de-
duced from the optimal solution (x∗, y∗, p∗, q∗) of the
QP problem

max
x,y,p,q

x′(Â + B̂)y− p− q

subject to

Ây ≤ pen,

B̂′x ≤ qem,

x′em = 1,

y′en = 1,

x ≥ 0, y ≥ 0,

where Â = A/(ā− a) and B̂ = B/(b̄− b).
Proof: see Bector and Chandra [?], p. 180. ut

2.2 Hybridized Genetic Algorithm’s Solu-
tion

In the Nishizaki and Sakawa’s multiobjective example
([?], pp. 93–95), Player I has three pure strategies
and Player II four strategies. Let us retain a single
objective version, with the following payoffs

A =

 1 4 7 2
3 6 1 8
2 5 3 9

 and B =

 5 1 2 4
3 4 8 3
1 8 1 2


The values of the worst and the best degree of satis-
faction are given by a = b = 1, ā = 9, b̄ = 8. We
have the QP problem

max
x,y,p,q

1
8

x′ A y +
1
7

x′ B y− p− q

subject to
1
8

A y ≤ p e3,
1
7

B′ x ≤ q e4,

x′ e3 = 1, y′ e4 = 1,

x′ = (x1, x2, x3) ≥ 0, y′ = (y1, y2, y3, y4) ≥ 0.

The optimum solutions of the QP problem
have been obtained by an iterative method 3.
We have x∗ = (.4795, .2877, .2329), y∗ =
(.0481, .5948, .2857, .0714), p∗ = .5712, q∗ =
.4990.

3The QP problem is solved by using the primitive ‘FindMaxi-
mum’ of the Mathematica package.



3 Multiple Objectives Fuzzy Matrix
Games Using Genetic Algorithms

3.1 Bimatrix games definitions
A single objectives bimatrix game 4 (a non-zero-game
with two players) is evaluated in a fuzzy environ-
ment where the objectives are uncertain. A bima-
trix game is represented by G = (Sm, Sn, A, B).
Let em be an m-dimensional vector of ones, en hav-
ing a dimension n.The players’ strategy spaces are
the convex polytopes Sm = {x ∈ R≥0, x′em = 1}
and Sn = {y ∈ R≥0, y′en = 1}. The list of
the r payoff matrices for Player I is represented by
Ak = (ak

ij)m×n, k ∈ K , {1, . . . , r}. The list of
the s payoff matrices for Player II is represented by
Bl = (bl

ij)m×n, l ∈ L , {1, . . . , s}. Pure strategies
of the players correspond to the rows and columns
for each matrix : if Player I chooses a pure strategy
i ∈ I , {1, . . . ,m} and Player II a pure strategy
j ∈ J , {1, . . . , n}, Player I obtains the payoff
vector

(
a1

ij , . . . , a
r
ij

)
and Player II the payoff vector(

b1
ij , . . . , b

s
ij

)
. Mixed strategies are define by the prob-

abilities x ∈ X , {x ∈ Rm| e′m.x = 1, x ≥ 0} for
Player I and y ∈ X , {y ∈ Rn| e′n.y = 1, y ≥ 0}
for Player II. For any pair of mixed strategies (x, y),
the Player I’s k-th expected payoff is x′.Ak.y and the
Player II’s l-th expected payoff x′.Bl.y. The objec-
tives of Player I and Player II will be the Programming
problems maxx x′Ay subject to x′em = 1, x ≥ 0],
and maxy x′By subject to y′en = 1, x ≥ 0, re-
spectively.In this study, we assume that the two play-
ers have fuzzy goals.

3.2 Nishizaki-Sakawa’s model

Definition 8 Let the fuzzy goals for Players I and II
be denoted by p1 = (p1

1, . . . , p
r
1) ∈ D1 ⊆ Rr and

p2 = (p1
2, . . . , p

s
2) ∈ D2 ⊆ Rs. The Player I’s kth

fuzzy goal Gk
1 is a fuzzy set characterized by the mem-

bership function (MF)

µk
1 : Dk

1 7→ [0, 1].

Similarly, the Player II’s lth fuzzy goal Gl
2 is a fuzzy

set characterized by the MF

µl
2 : Dl

2 7→ [0, 1].

A fuzzy goal expresses the player’s degree of satis-
faction for the corresponding payoff [42]. Players are
assumed to specify intervals for their degree of satis-
faction, such as a ≤ p ≤ ā for Player I. For p < a,
Player I’s kth MF is µk(p) = 0, for p < āwe have

4This presentation is inspired from Nishizaki and Sakawa [42]

µk(p) = 1 and for a ≤ p ≤ ā, µk(p) is supposed con-
tinuous and strictly increasing. If the Player I’s MF of
the fuzzy goal µk(xAky) is a linear function, we then
have for any mised strategies (x, y)

µk(xAky) =


1, xAky > āk

1− āk−xAky
āk−ak , ak < xAky ≤ āk

0, xAky ≤ ak,

where the payoff ak gives the worst degree of satisfac-
tion for Player I w.r.t. the kth objective. It is computed
as

ak = min
x∈X

min
y∈Y

xAky = min
i∈I

min
j∈J

ak
ij .

On the contrary, the payoff āk will give the best degree
of satisfaction for Player I w.r.t. the kth objective and
is computed as

āk = max
x∈X

max
y∈Y

xAky = max
i∈I

max
j∈J

ak
ij .

The fuzzy decision rule by Bellman and Zadeh 5 may
then be used to aggregate the goals, such as

µ(x, y) = min
k∈K

µk(x, y) = min
k∈K

(
1− āk − xAky

āk − ak

)
.

We also have (see Nishizaki and Sakawa [?], p.47)

µ(x, y) = min
k∈K

( m∑
i=1

n∑
j=1

âk
ijxiyj + ck

)
,

where

âk
ij =

ak
ij

āk − ak
and ck = − ak

āk − ak
.

Theorem 9 (Equilibrium solution) An equilibrium
solution w.r.t. the degree of attainment of the aggre-
gated fuzzy goal is the optimal solution of a nonlinear
programming problem

max
x,y,σ1,σ2,p,q

σ1 + σ2 − p− q

subject to

xÂ
k
y + ck

1 ≥ σ1, k ∈ Nr

xB̂ly + cl
2 ≥ σ2, l ∈ Ns

Â
k
y + ck

1em ≤ pem, ∃k ∈ Nr

B̂′
l
x + cl

2en ≤ qen, ∃l ∈ Nr

x′em = 1, y′en = 1,

x ≥ 0, y ≥ 0.

5R.E. Bemman and L.A. Zadeh, Decision making in a fuzzy
environment, Management Science, 17, 141–164, 1970. One an-
other method for aggregating multiple fuzzy goals is weighting
the coefficients.



The optimal solutions are obtained by solving r × s
problems, including each only one of the two classes
of r and s inequalities.

3.3 Numerical example

In the following example, two players example 6.
Players I and II have respectively three and four pure
strategies, and three different objectives. The goals
of the two players are fuzzy. The payoff matrices for
Players I and II respectively, are

A1 =

 2 6 5 7
2 0 5 4
4 7 6 9

 , A2 =

 3 6 8 2
6 2 0 8
2 9 7 4



A3 =

 1 4 7 2
3 6 1 8
2 5 3 9

 , B1 =

 1 6 1 7
8 2 3 4
4 9 3 5


B2 =

 8 2 0 8
1 9 7 6
5 2 8 5

 , B3 =

 5 1 2 4
3 4 8 3
1 8 1 2


The values of the worst and the best degree of satis-

Figure 5: Optimal solutions

faction are given by a = b = 1, ā = 9, b̄ = 8. We
have the QP problem

max
x,y,p,q

1
8

x′ A y +
1
7

x′ B y− p− q

subject to
1
8

A y ≤ p e3,
1
7

B′ x ≤ q e4,

x′ e3 = 1, y′ e4 = 1,

x′ = (x1, x2, x3) ≥ 0, y′ = (y1, y2, y3, y4) ≥ 0.

The optimal solutions ... The optimum solutions of
the QP problem have been obtained by an iterative

6This numerical application is an adaptation of the Nishizaki
and Sakawa’s example, page 94 [42].

Figure 6: Best solutions by using GA

method 7. We have x∗ = (.4795, .2877, .2329), y∗ =
(.0481, .5948, .2857, .0714), p∗ = .5712, q∗ =
.4990.

4 Conclusion

A Simple Genetic Algorithm with
Mathematica

Principles and Pseudo-code

Genetic algorithms (GAs) are stochastic search tech-
niques which procedures are inspired from the ge-
netic processes of biological organisms by using en-
codinds and reproduction mechanisms. Theses princi-
ples may be adapted to real-world optimization prob-
lems (OPs)for which the traditional gradient methods
may not be adequate. Let a simple OP be max f(x)
subject to lower and upper bounds xl ≤ x ≤ xu,
where x, xl, xu ∈ Rn. In binary-coded GAs, each
parameter value is encoded as a gene (binary string)
and concatenate together into a chromosome (a vec-
tor of parameter values). The problem is then trans-
lated to a combinatorial problem, the points of which
are corners of a high-dimensional cube [?]. Let P (t)
be a population of potential solutions at generation t,
and new individuals (offspring)C(t), the peudo-code
is shown as algorithm A.1 [2, 17]. An initial popula-
tion of individuals (chromosomes) is generated at ran-
dom, and will evolve over successive improved gener-
ations towards the global optimum . The individuals
evolve through successive generations t (iterations) by
means of genetic operators. More precisely, a new
population P (t + 1) is formed by selecting the more
fit individuals, whose members undergo reproduction
by means of crossover and mutation. Usually, a gene
has converged when 95 % of the population has the
same value and the population converges when all the
genes have converged [2].

7The QP problem is solved by using the primitive ‘FindMaxi-
mum’ of the Mathematica package.



Algorithm A.1: simple genetic algorithm
begin /* initial random population */

t:=0;
generate initial P(t);
evaluate fitness of P(t);

while (NOT finished) do;
begin /* new generation */

for populationSize/2 do;
begin /* reproductive cycle */

select two individuals from P(t) for mating;
recombine P(t) to yield offspring C(t);
evaluate offspring’s fitness;
select P(t+1) from P(t) and C(t);
t:=t+1;

end
if population has converged then

finished := TRUE
end

end

Binary Encoding and Fitness

Let the OP be simply the scalar function
max f(x, y), x, y ∈ R, each variable may
be represented by a 5-bit binary number8. An
individual (or chromosome) contains two param-
eters (or genes) and consists of 10 binary digits,
such as for (x,y)= (8, 10)10 ≡ (01000|01010)2.
Let a simple OP with bounds be [39]
max f(x) = x sin (10πx)+1, x ∈ [−1, 2]. Suppose
that the required precision is six decimals. The range
of x is 3 = 2 − (−1). The domain should be divised
into at least 3 × 106 equal size subranges. Since we
have 2097152 = 221 ≤ 3 × 106 ≤ 222 = 4194304,
22 bits are required as a binary vector. The lower and
upper bounds of x are the 22-bit strings (000 . . . 000)
and (111 . . . 111) respectively. The mapping from
the 22-bits string (< b21, b20, . . . , b0 >)2 into a real
number x in [−1, 2] requires two steps: firstly, convert
the binary string to base 10

(< b21, b20, . . . , b0 >)2 =
( 21∑

i=0

bi2i
)
10

= x′,

and secondly find the corresponding real number

x = −1 + x′
3

222 − 1
.

8Real-number encoding has been proposed to prevent some
drawbacks of the binary encoding [9]: in industrial engi-
neering optimization problems, 100 variables in the range
[−500, 500]with a 6 digits precision would produce a binary solu-
tion vector of length 3000 and generate a serach space of 101000.

For example, (1000101110110101000111) = x′ rep-
resents 0.637197, since we have x′ = 2288967 and
x = −1 + 2288967 × 3

4194303 = .637197. The fit-
ness of individuals depends on the performance of the
corresponding phenotypes (objective function). The
Mathematica module for decoding the chromosome is
shown in Figure ??.

Figure A.1: Coding procedure

Genetic Operators

There are three types of operators for the reproduction
phase: the selection operator of more fitted individu-
als, the crossover operator that creates new individu-
als by combining parts of strings of two individuals
and the mutation that make one or more changes in a
single individual string. Each gene (string) is selected
with a probability proportional to its fitness value. The
biased roulette-wheel mechanism consists in a wheel
with N divisions, where the size is in proportion to the
fitness value (see Figure ??). The wheeel is spun N

Figure A.2: Biased roulette-wheel

times each times chosing the individual indicated by
the pointer. At a crossover single point, the chromo-
somes of two performant individuals (parents) are cut
at some random position.The tail segments are then
swapped over to create two new chromosomes (see
Figure ??). The Mathematica primitives 9. The muta-



Figure A.3: Single point crossover

Figure A.4: Simple Crossover

tion operator alters one or more genes of the offspring.
The crossover and mutation probabilities, denoted by
pc and pm respectively, are key parameters of control
besides the population size N .

Example

Let the OP be

max f(x) = 1 + cos(πx) + (3x mod 1), x ∈ [0, 1].

The exact solution is given by x∗ = .2739, f(x∗) =
1.5358. The application uses the simple Mathematica
notebook due to Bengtsson [4]. The population size is
32, the string length is 6 and the mutation rate is .002.
The Fig. ?? shows the initial and the final eleventh
generation of chromosomes.

9The Mathematica primitives have been adapted frm Freeman
[14] and Bengtsson [?] are shown in Fig. ??

Figure A.5: Mutation

Figure A.6: Simple application of GAs



B GA-based Optimization Package
GENOCOP III

The GENOCOP system [36, 36] retains a floating
point representation: for a problem with n variables,
the i-th chromosome in a permisible solution is coded
as a n-dimensional vector. The GENOCOP system
initialy a population of potential solutions. Two sub-
population are considered: the first population Ps con-
sists of search points satisfying only the linear con-
straints and the second population Pr consists of ref-
erence points satsfying all the constraints. The devel-
opment in one population influences the evaluations
of individuals in the second. The reference points are
infeasible search points are ”repaired” for evaluation.
The feasibility of the points in Ps is maintained trough
specific operators 10 Linear equations must be elim-
inated at the beginning to prevent from instabilities.
The number of variables is reduced by substitutions.
The nonlinear equation hk(x) = 0, k = q + 1,m are
replaced by a pair of inequations ε ≤ hk(x) ≤ ε,
where the parameter ε defines the precision of the sys-
tem.
GENOCOP is notably available from the Univer-
sity of North Carolina / College of Engeneering at
Charlotte (USA) : ftp.uncc.edu/coe/evol (file ”geno-
copIII.tar.Z”) 11. Different data and controlled param-
eters are defined in the input file, such as: the linear
inequalities and ranges for the variables, the popula-
tion size, the number of generations, a ”0” for a min-
imization problem and a ”1” otherwise, a ”1” for a
start from a single point (identical individuals) or ”0”
for a start from a random population, the probability
of replacement, etc. Figs.B.1 to B.1 illustrate and give
more details about the example of section 1.2. Fig.B.1
shows the feasible region F . From the convexity
of the feasible region, it follows that for each point
a ∈ F , there exists feasibles ranges, such as [xa, x̄a]
for a fixed y(a), and [y

a
, ȳa] for a fixed x(a). The

listing of the ouput file is shown in Fig.B.2. Fig.B.3
shows the solutions and errors for different number od
generations. The exact solution is praticaly obtained
after 100 iterations of the GA approach.

10Given a search point s ∈ Ps, if s is fully feasible (s ∈ F ),
then eval(s) = f(s). Otherwise (i.e., snotnot ∈ F), the system
selects one od the reference points in Pr , creates random points
z such as z = as + (1 − a)r, a being random numbers. For a
fully feasible z we have eval(s) = eval(z) = f(z) . If f(z) is
greater that f(r), then z replaces r as a new reference point (see
[37] for more details).

11The implementation of the package has been adapted for this
study, by using the compiler ACC 1.4 from Absoft C/C + +.

Figure B.1: Feasible region and solution

Figure B.2: Listing of the output file



Figure B.3: Best and exact solutions
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