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A. Fuzzy environment (1/2)

[ Definition: Any vague statement Sasa fuzzy

subset of an universe space X with membership
function(MF) pg : X — [0, 1].

O Forany z € X @ pg(r) = 1 means S is
"True" for z: ytg(z) = 0 means S is "False" for

z: pg(z) € (0,1) means S is "possible" for z
with a p1g(x) degree of possibility.

[ Definition: For a piecewise continuous trian-
gular shaped MF: support of Adenoted supp A = / @

{z € X|p4(x) = 0}; height of A, hgt A =

e e ———————— -

>1

sup, 44 j(); crossover pointsby ¢ = {z|u 4(x) = 7] 0
%};alpha-cuts of A,s.a. Ag = {z € X\,uﬁ(a:) -
o} (see figure).
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A. Fuzzy environment (2/2)

O Definition: Fuzzy number of LR type A7 p =
(a o é‘;r) with reference functions I and R

s Ya s

. and positive scalars 6, , J s.t.

H(x)
1 ~
A LR
{15
L((5-x)'2)
X

Notation: a, "mean value"; o, , 5;{, left and
right spreads.

0 Example: For L(z) = ﬁ and R(z) =

1
52 (see figure).
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B. Fuzzy bimatrix games (1/3) :

1. Problem formulation (crisp / fuzzy version)

L] A two-person bimatrix game by
G= (5" S" A B)

, with strategy spaces S™, S™ for Players I and
II. and m x n real payoff matrices A, B .

L] Mixed strategies of Players [ and [T by m x 1
Xandn x 1y.

L] Strategy spaces defined by convex polytopes
saa. S ={x e R x'e;, =1} and S" = {y €
R%.y'e, = 1}.

L] Payoffs of Players I and II by two m x n ma-
trices A and B with real entries.

L] Payoff domains of players I and II, by sets
Dy ={xX’Ay|x € S} C Rand Dy = {x'By|y <
S"t CR.

Ll Programming problems of the players [ and II,
represented by {maxy X’Ay subject to e’;;,X =
1, x > 0} and {maxy X’By subject to e}y =
1, y = 0}, respectively.

L] A (not completely) fuzzified bimatrix game
with fuzzy goals and payoffs by

Notation: X, B. fuzzy payoffs m x n matrices;
¥, 10, aspiration levels of Players I and II; p, ',
fuzzy tolerance levels for Player I: ¢, ¢'. fuzzy
tolerance levels for Player II: <, 2. fuzzy in-
equalities.

[ A fuzzy goal for Player I by a fuzzy set Gy
which membership function (MF) iy : Dy —
[0, 1]. Player II's fuzzy goal, similarly defined.
L] LR-representation of fuzzy A with entries s.a.
Gij = (a5, Og 5%)111%- Notation : mean value
@jj left and right spreads, 5{% and 5;_:._}..
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B. Fuzzy bimatrix games (2/3) :

2. Equilibrium solution (crisp version)

(] Definition. Nash equilibrium point (x*,y") ' N o
s.t. players’ objectives full filled simultaneously. [JEquivalence Theorem: conditions for (X*,y")

to be an equilibrium point, as solution of the QP
problem :

£ *

X*Ay* = max{x'Ay*| x'e;, = 1, x > 0}
X 2
x’*By* _ m}a;x{x"kBy| y.fen =1, y>0! KI}}}%},{Q X (A + B)y —p—q
subject to
Ay E pem:-
Bx < gey,
X'e, = L,
ye,=1,
x>0,y >0
Value of the game at the point (X"*Ay™*, x"*By*).
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B. Fuzzy bimatrix games (3/3) :

2. Equilibrium solution (fuzzy version)

L] Definition: (Bellman-Zadeh decision princi-
ple). Player I's fuzzy decision as the intersection
of the fuzzy goals and expected payoffs, s.a.for
Player I:

,U'a.(x:y) = miﬂ{}.txgy(p),ﬂél (p)}

Player II's fuzzy decision, similarly defined.
L Definition : degree of attainment of the fuzzy
goal as the maximum of the MF 1,y yy:

di(x,y) = max (miﬂ{ﬂ-xg},(i})a H-QL(P)}) :

Player II" s degree similarly defined.

[J According to the Nishizaki and Sakawa’s model,
each player maximizes the degree of attainment
of his goal. Nash equilibrium solution w.r.t. the
degree of attainment of the fuzzy goal as a pair
of strategies (X", y") if, for all other strategies:

1(x.y") forallx € S™,
o(x*,y) forally € S™.
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4 A

| - Single objective fuzzy
bimatrix games

1. Problem formulation

] Equilibrium solution w.r.t. the degree of at- 2. Equilibrium solution

tainment of the fuzzy goals by the two players [ Applying Kuhn-Tucker conditions, equilib-
(Nishizaki and Sakawa’s model). rium point (X*,y"), as solution of a non linear
[] Player I's programming problem: programming problem.

/ :'<
X(A+AL )Y —a
max dy(x,y") = _( ABY =

X a—a+XAp\y*
subject to
x'e,, =1,
X > 0.

[] Player IT’s programming problem similarly

\ defined. /
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l1- Multi-objective fuzzy bimatrix
games (1/3)

1. Problem formulation
L] A multi-objective bimatrix game with uncer-
tain objectives and payoffs.
L] List of  payoff matrices for Player I by g.k =
(”f})mxn k E N,. List of s payoff matrices for

Player II by B = (5J)m><n [ € Ng.
[ For triangular fuzzy payoffs, the LR-representation

~k k sk— sk Bl
of entries: a;; = (a ?},5.31} 0 +)LR and b'.j =

(b5, 0, 045 LR-

bij
U Deﬁnltlon For any pair of mixed strategies
(X,y), Player I's kth fuzzy expected payoff de-
fined by

~k A
XAy = (X’Al"ygx’Ai_y,x’Aier)
LR

and characterized by the MF

K Kk Dl - [0 1]
Player II's /th fuzzy expected payoffs and MF

of Player II are similarly defined.
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l1- Multi-objective fuzzy bimatrix
games (2/3)

L] Definition : Player I's kth fuzzy goal G’f as
a fuzzy set characterized by the MF
,u}f ; Dif — [0,1].
Player II's /th fuzzy goal Gg as a fuzzy set char-
acterized by a similar MF.
O Definition: For any pair of strategies (X,y), [ JF "=

an attainment state of the fuzzy goal, represented
by the intersection of the fuzzy expected payoffs L

~k _ .
x’A"y and the fuzzy goal G!f (minimum com-
ponent method: seefigure), s.a.

k - k

e vy (D) = ming gt e
) =minf i o )iyl .
where p € D'f, a Player I's payoff.
L] Definition : Degree of attainment of the kth
Player I's fuzzy goal as a maximum of the at- a 0
tainment state

p’ﬁ(x ,),) (p* ) = HTEDB..X }Li(x ,),) (p)

o] |

Degree of attainment of the fuzzy goal for Player
[, similarly defined.
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l1- Multi-objective fuzzy bimatrix
games (3/3)

2. Equilibrium solution

(] Definition : Equilibrium solution w.r.t. the
degree of attainment of the aggregated fuzzy
goal, a pair of strategies (X", y"*) s.a. for all other
strategies:

D'(x*,y*) > Dl(x,y"), forallx € §™
D*(x*,y*) > D*(x",y), forally € S™.

[J Definition : Player I's degree of attainment
of the aggregated fuzzy goal, defined by

| x'(AF + Ak )y — oF
D(x,y) = min ( A )Y —
keN, ak — ok + XAy

[] Player I's mathematical programming prob-
lem:

max o
X,0
subject to

X!(Ak“‘fﬁfi)y* —Qk
ak — ok + X’Afiy*

X!em =1,

X > 0.

1

Player II's mathematical programming problem,
similarly defined.

L] Applying the Kuhn-Tucker conditions, equi-
librium point (x*,y*) as solution of a nonlinear
programming problem.
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/
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Q1. fuzzy numbers arithmetics

l ~ o l Pt ~
A B x 3 A B
A+B
oy Summm———_T A L R Y -
SAN
R R
1 0 1 3 5 8 -6 -1 0 1 2 3 5
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Q2. Extented addition

The extension principle will give a method of calculating the MF of the output
from the MFs of the input fuzzy quantities. More precisely, let = : Rx R — R with ﬂ (X)
* € {+.—,.,/}, a binary operation over real numbers. Then, it can be extended
to the operation ® over the set §(B) of fuzzy quantities.

—

1.  Extension Principle

TaeoreM 0.1 (Extension principle). Denote for a, b € F(RR) the quantity
¢ = a* bthen the MF . is derived from the continuous MFs ., and piy, by the
expression

!

ftagn(z) = sup min{j, (), p(y)}

z=T*Yy

It tells that the possibility that the fuzzy quantity ¢ = a @ b achieves z € R is
as great as the most possible of the real z, y such that z = z * y, where the
a, b take the values =, y respectively. For the addition, we alsn have the ordinary
convolution

noou(s) = [ ooz —a)ds

2. Example

THEOREM 0.2 (First Decomposition Theorem). For every Ae F(R), we have 0
A =], Aa =sup,. 2 3

10

Let the MFs of @ and b be
r—1, ze[l.2]
pa(z) =< 3—z re2,3],
0, otherwise. 3. Note
and THrEOREM 0.3 (Addition of LR-type FNs). Let a and btwo FNs of LR-type i =
r—4, z[57. + _ _ +
RIS B (a,8, .5 )Lrandb = (b, 8 8y LR, thena @b = (a+b, 4, +8 04 +8,) )Lr.

0. otherwise. ~ 7 . - 7
 orhermise Fora = (2,1,1)rpand b= (5,1,2)Lp. we simply have a b = (7.2,3)Lr
The a-cuts are a, = [0+ 1,3 — af and b, = [0 +4,7 — 2a]. Then, we have
éa = (@@ b)a = fa + ba — [20 + 5,10 — 3a]. Solving in a, we obtain

(x—5)/2, x € [5,7],

Hagys(®) ={  (10-2)/3, z € [7.10],
0, otherwise.
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Q3. Lattice on fuzzy numbers

=2 0 1 7/42 5/2 3 4 /
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Q4. Membership function shapes

\_

Ramp-type MF Sigmoidal MF
1, (x) 1t (X)
A : X 0 B X
7 21 c
#3()() Bell-shaped MF 1 |H,(X) \ Trapezoidal MF

Crossover point

C islope I§/(2w) i X 0 D ! ] X
c-W ¢ ctw ab cd
Ho(X) Triangular MF
E |||||| “hl X
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Q5. Min-max problems

A rational optimality criterion is such that the mini-
mizer evaluates his optimal decision against the worst
decision, that the maximizer may choose [17]. In a
min-max problem, a function to be maximized w.r.t.
the maximizer variables is minimized w.r.t. the mini-
mizer variables. A min-max problem with unseparate
constraint is defined by

minmax f(X,y
inma £ (x,)

subject to
Glx,y) <0,
x € X = {x|g(x) < 0.

If the constraints are separated, G(X,y) < 0 does not
exist %, Let o be an upper bound of f w.r.t. y such that
maxyey f(X,¥) < o, the min-max problem is trans-
formed into the optimization problem with an infinite
number of constraints

min o
X0
subject to
f(x,¥) <o, forally €Y,
xe X = {x|g(x) < 0.}

A method to find a solution to this problem is to solve
a series of relaxed problems [17]

min o
X.T

subject to
fx.¥y) <o, forally' €Y, i € Ng,
xeX ={x[g(x) 0.}
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Q6. Bellmann-Zadeh fuzzy

decision principle

According to the Bellman-Zadeh symmetry principle,
a fuzzy decision set is achieved by using an appropri-
ate aggregation of the fuzzy sets.

Definition 19 Let X be a set of possible actions,
{Gi(j € Ny} a set of fuzzy objectives, and {Ci(i €
m} the decision set is defined by

-(Ne)n(ne)

with MF jip : X — [0,1] given by

(z) = (3/:\1 He, (ﬂf)) /\(Z\l ”‘5'1'(3“'))'

The MFs of the aggregate fuzzy goal can be expressed
as

plz,y) = 111111{,uk(¥Ak1)}
kel
Hence, we have with linear MFs

k
) = pin S5 ey - )

i=1 j=1

04/02/2024
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7. Equivalence theorems

1. Equivalence theorems
Bimatrix game

Two players I and II have mixed strategies given by the n-dimensional vector
x and the m-dimensional vector y, respectively. The payoffs of players I and
IT are the n x m matrices A and B, respectively. Let e, be an n-dimensional
vector of ones, e, having a dimension m. The objective of player I will be:
{maxy x’Ay subject to e’yx = 1, x > 0}. The objective of player II will then
be: {max, x'By subjecttoej,y = 1. y > 0}.

Equivalence to QP problems

DerFINITION 0.1 Nash equilibrium. A Nash equilibrium point is is a pair of
strategies (x*,y*) such that the objectives of the two players are full filled simul-
taneously. We have

x-acAy*

x'*Ay*

max{x'Ay*le,x = 1,x = 0}
X

max{x"*Ayle,.y = 1,y > 0}
¥

Applying the Kuhn-Tucker necessary and sufficient conditions, we have

THeEOREM 0.2 (Eguivalence Theorem). A necessary and sufficient condition
that (x*,y*) be an equilibrium point is it is the solution of the QP problem

max X(A+By—-a—-0

x.y.0.
subject to
Ay < aey,
B’x < fe,,,
e'x =1,
e’y =1,
x=z0,y=0,
where «v, 3 € R are the negative of the multipliers associated with the constraints.

PROOE see O.L. Mangasarian and H. Stone (1964).pp. 350-351.00

Equivalence to LP problems
In zero-sum games we have B = —A. The QP problems degenerate to two dual
problems. We have

11;1511( ¥
subject to
AT < —yeg,
e'px =1,

x = 0.

and
min
X. e
subject to
Ay < aem,
my =1,
y=0

Numerical example with Mathematica;

Clear[3, B]:
Ri={{2, -1}, {-1, 1% Be={{1, -1}, (-1, 23} xo={xl, x2};yi={yl, y2}re:= {1, 1)

Timing [Maximize [Rationalize[
(X (R+B).y-a-f,
A[[11].ys a&& A[[2]].¥s a &k
Transpose[B][[1]].x< p && Transpose[B][[2]].x < f &€
eX=1ékey =14k
¥le 086 x2 : 0&Eyl = 0&EY2 = 0)],
(u1, %2, 1, 72, ¢, Y]]

{51.375,{D,{xlq;,xhé,qué,yz-)g,nq‘lg,ﬁqé}}}

Jig]

{61,375, {0, (kL= 006, k2004, vl 0.4, ¥25 0.6, 0+ 0.2, f0.2}))
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Q8. Standard fuzz

y LP problem

1. LP problem with fuzzy constraint

The fuzzy linear programming problem consists of a crisp objective function
and a fuzzy constraint, such that

max, ¢ x (c,x<R7)
subject to

A;x by (i €F)
x=0.

The a;;, b; ame fuzzy numbers of §{R) whose values are known with imprecision.
The fuzzy inequality = tells that the decision maker{ DM) willallow some violation
in the accomplishment of the constraint. The membership functions u; : §(R) —
[0.1], © € Mm will measure the adequacy between both sides of the constraint
Aj;.xand b;. The FNs p; will express the marging of tolerance for esch constraint.

2. Converting the fuzzy constraint
The FLP problem may be written

mix, ¢ X [c.X £ R")

subject to

Aix Za b+l - a), (i € )
x>0

In the constraint, the inequality rule <= is to be chosen by the DM among several
ranking functions (or index) matching each FN into the real line, such that F :
FE)— R

3. Solving one auxiliary problem

Let a triangular FN be expressed by & = (a0 ,a'), wher a . a' are the
lower and the wupper limit of the support, respectively. Ranking the two fuzzy sides
of the inequality may give the following auxiliary parametric LP problem

maxe ¢ X (ex <R

subject o

(A +4; + A7) X < (b b +5) 4 (i +p; +5)(1- ), (1€ M)
x =0

4. Numerical example

This numerical example is due to Delgado et al (1990). The FLP problem is

MaXy, 0, = = 5xy 4 Gz
subject to

3xy 4 dxp = iz,

3y 4+ 119 = 7,

Ty, 19 = 00

According to the rule that the DM will choose, two different auxiliary problems

and solutions are obtained. We have
rulel: T <g ¥ = r<uw
MaXz =, == 5x1+ faxa
subject to
Fry 4 dre < 18 £ 3(1 — a),
2y + = T+ (1 —a),
1,72 = 0, 2 € (0,1]

The parametrized solution with rule 1 given by Mathematica is shown hereafier.

rule2: & <g, § = Ty

AL 1, I s
X5 06X LT

Makz =y = = 3oy + fxz
subject to

41y + 5553 = 16+ 2.5(1 — a),
3ry + 213 < 6+ .5(1 — a),
1,12 = 0, 2 € (0,1]

The parametrized solution with rule 2 given by Mathematica is shown hereafter.

= Skt R
Ml
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Q9. a-Nash equilibrium solution

(1/3)

We consider a bimatrix game & = [S’“:S“,A,ﬁ}
with furzy payoffs. Suppose that the payoffs are
triangular fuzzy numbers (TFNs) of the form a =
(I, m, u), where the real numbers I, m and u denote
the lower, the middle and the upper value, respec-
tively. The fuzzy payoffs of Player I are represented
by A = (fij)mwn. The entry i;; denotes the (fuzzy)
payoff that Player I receives when the players [ and 11
choose the pure strategy @ and j respectively.

Definition 12 The a-cut of a fuzzy number @ 15 de-
fmed by a, = {x € X |uz(z) = al It can be repre-
senied by the closed interval

8. a] = {Mda — a,) + 0, A€ [0, 1]},

where o, and d. denote the real lower and the upper
bounds of the elemenis, respectively.

According to the method for solving classical games
under uncertainty, Larbani [10] introduces Nature as a
third Player : Nature chooses the payoffs of Players I
and II and the two players express their beliefs about
the behavior of Nature. The a-cuts of the payoffs of
Player I are

"i"-‘l = [ﬂm-“im]-
- %mm—LJ+L}.

where A = (Aijlmxn €
the payofts of Player II are

B., = [Eng:]_!m]~

{H[Eﬁz _Lz] + L?}

[0, 1]. Similarly, a-cuts of

where Il = (7ij)lmuxn € [(L1], i € My, and 7 € M.,
Nature will be favorable to Player [ (resp. to Player II)
if Ay € |%, 1] (resp. m; € |%: 1]) and Nature will be
unfavorable to those players, otherwise. For the ex-
treme values Ay; = (0 (resp. m; = 0, Player | (resp.
Flayer II) is rather strong pessimistic. For Ay; = 1
(resp. w;; — 1) Player 1 (resp. Player 11} is rather
strong optimistic. If Ay = my = % Mature has a bal-
anced behavior towards the players [10]. The solution
can be found by solving the QP problem

max xX'(A(A") + B{x")y -p—q
subject to

Aj Ay < pe. i =12

B(m")x < ge,, i = 1,2

x'e, = 1.
yen — 1.
x=0y=0,

Proposition 13 (o-Nash equilibrium) [70] Ler T
and Us; be closed subsets for A;; and w5 respectively
in [0,1]. An o-Nash equilibrivm (x*_ y*, A% 7%) of
the pame G = (5™, 5" A(AY),B(w")) is such tha
AY — min T and 7% = min Uy;.

Proof: Larbani [10], p. 661. ]

04/02/2024 Fuzzy Bimatrix Games (A.Keller) 23




Q9. a-Nash equilibrium solution
(3/3)

case 1:  For Player I, we have Ty; = Uy; = [0, %] and
A — 7% = 0. The payoff matrices of Players 1 and I1

are respectively

8 153
AN
85 35

195 130
B(=") .
2153

The game has three Nash equilibria * The game has
two perfect equilibria and one mixed equilibrium. The
first perfect Nash equilibrium is

and

(rl.25) = (0, 1), (w1 93) = (0,1}

with an expected payoff of 177.5 for Player | and an
expected payoff of 153 for Player I1. The second per-
fect Nash equilibrium is

(r1,x5) = (1,00, (w1, u3) = (1,0)

with an expected payoff of 177.5 for Player | and an
expected payoff of 195 for Player IL The third mixed
Nash equilibrium is

(2}, 73) = (3532, B468), (yy, ya) = (2004, .7006)

with an expected payoff of 1558.1 for Player I and an
expected payoff of 144.9 for Player IL
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Q9. a-Nash equilibrium solution
(2/3)

Larbani [10] introduces the beliefs of the players
about the possible values of the payoffs. The a-
cuts of the payoffs of Player | are defined by A, =
|im~“i.-., |. where the lower and upper bound matri-
ces A, and "im denote the lower and upper bound
matrices.

A - 175 + 5o ]ED-I—GC:L . and
= B+ 100y 175+ 5oy [

[191.213.5] []28.4.13’?.4])

}ial _ ( 190 — ]|:|r1|_ ]58—20!] ) Hé —
100 — 100y 190 — 10a;y [115.5,129] [156.6,161.4]

The a-cuts of the payoffs of Player I are similarly

defined by B, = [B TEM |, where B, and B, are Suppose, as in Larbani [ 10], that the players may have

the lower and upper bound matrices. two types of beliefs. In the first case, the players be-
lieve that Mature plays against them. In the second

190 + 100 128 + 40 case, Player I believes that Nature is favorable to him,

B, = ( 115+ 5o 150 + Bog ) only for the pairs of strategies (1,1) and (2,2), and

against him for the other pairs of strategies. Player
I still believes that Mature is against him for all pairs

= 25— ]5(]’-': 13-5—6(13 R
B., = of strategies.

130 — 100k, 162 — Bag

If the players choose a-cut levels such as o = o —
1, the n-cut matrices of Player | and Player II are re-
spectively

A, _ ((1175.5,180] [150.6,157.8]
3 [81,99] [175.5, 180]

04/02/2024 Fuzzy Bimatrix Games (A.Keller) 25




/Q1 0. Players bheliefs on Nature’s
strategies

~

case J: The profits of Players | and 1l depend on the
strategies that Nature will choose. Nature is favorable
to the players in the range [%: 1] for A and . The re-
sulting profits in varying A and u in the interval [0, 1]
are illustrated by the density plots Fig.2. The prof-

its are then increasing when Nature is more favorable !
{(with higher values of A and u). ::
J

:

Fa

3

2

A

0

1234567891 0123454673891

A A

Figure 2: Profits and Nature’s strategies

\_

C=hNLELe Yiom
B~

\_
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Q11. Matrix Game with fuzzy

payoffs (1/2)

1. Problem of the Player |

The fuzzy matrix game problem of the Player I in a fuzzy environment is

max v
subject to
m
Y aymi 2 v, (€ Na)
=1
m

Zr, 1, 1; 2 0(i € Npy).

i=1

The payoffs of Player I a;; are fuzzy numbers of §(R) whose values are known
with imprecision. The fuzzy inequality * tells that the decision maker (DM) will
allow some violation in the accomplish of the ¢ i

2. Classical changing of the variables
Letchange the variablesintow; = 3 (i € N,,). Wehave )7 u; \—¥
+.then v = ——-. The initial problem is transformed to

m
min E u;
=1

subject to

M3

@i 2 1, (G € N,)

u; > 0 (i € Ny,).

3. Introducing ranking functions

For solving the FLP problem in canonical form, we apply the following pro-
cedure : ranking functions are introduced to compare both fuzzy sides of the
inequality, and solving a parametric LP problem. The problem of the player I is
transformed to

m

min z u;
=1

subject to

-
Y ajui 2z 1-pi(1-a), (j €R,)
=1

u > 0(i €Np), a€(0,1).

The FNs p;’s are the maximum violation that the player will allow for the con-
straints.

6. Problem of the Player 11
The fuzzy matrix game problem of the Player II in a fuzzy environment is

min w
subject to
n
a5y; 2w, (i € Npy)
=1
n
S u=1y 200G EN,).
=1

The losses of Player Il a;; are fuzzy numbers of §(R) whose values are known
with imprecision. The fuzzy inequality = tells that the decision maker (DM) will
allow some violation in the accomplishment of the constraint.

7. Classical changing of the variables
Let change the variables into s; !.: (7 € N,). We have Z;‘ 185

_fw,_v, = the w x-r’]—‘) The initial problem is transformed to

n
max 3 s
j=1
subject to
1, (i € Np)

495 S

M=

1

5 20(j €N,).
The RHS of the fuzzy inequality is transformed to a crisp number.

8. Introducing ranking functions

For solving the FLP problem in canonical form, we apply the following pro-
cedure : ranking functions are introduced to compare both fuzzy sides of the
inequality. and solving a parametric LP problem. The problem of the player Il is
transformed to

m
max Z 8
j=1

subject to

=
pIL

=1

® 1+ @(1—a), (i €Ng)
8; 2 0(j EN,), a€(0,1].

The FNs g;’s are the maximum violation that the player will allow for the con-
straints.
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Q11. Matrix game with fuzzy
payoffs (2/2)

4. Solving the auxiliary problem

Let the payoffs a;; of Plz)cr I be a triangular FNs be expressed by a;;
(asj, g a}) where a u are the lower and the upper limit of the support,
respectively. Ranking d\e two sides of the inequality may render the following

auxiliary parametric LP problem

m
min Z""
i=1
subject to
m
Zlu,) +ag; 4 a,-']‘,u,- >34+ (pi+p +p])(1-a), (jEN,)
i=1
u; > 0(i € Np), @€ (0,1].

5. Numerical example
This numerical example is due to Campos (1989). The fuzzy payoff matrix of

Player I is
= ( 180 136 )
ST\ 60 1%
The FNs are defined by 180 = (180,175, 190), 156 = (136,150, 158), 90

(90,80, 100). The fuzzy margins are 5y = p = (0.10,0.08,0.11) for the Player
L

FLP problem
min uy 4 up
subject to
180wy + 90up >» 1 — 0.10(1 — a)

Auxiliary problem

min uy + up

subject to
545u; + 270uz > 3 —0.29(1 —a)
464u1 + 545u2 > 3 — 0.29(1 — a)

ut, u2 >0, a € (0,1).

Solution
We have * = (0.77,0.23) and v(a) = yoei—. a € (0,1].

9. Solving the auxiliary problem

Let the losses ayj of Pla\er 11 be a triangular FNs be expressed by ai;
5 a are the lower and the upper limit of the suppon. re-
wo ful]\' sides of the inequality may render the following
au.ulmrv pammel.ncl Pproblum

n
max Z 8
i=t
subject to
n

D laij +a;;+af)s; <3+ (qi+q +47)(1-a), (i € Nm)
j=1
0(j € Ny), a€(0,1].

10.  Numerical example
The fuzzy losses matrix of Player Il is

i ('li(')'l')
: 90 130

The FNs are defined by 180 = (180,175, 190), 136 = (156,150, 158), 90 =
(90,80, 100). The fuzzy margins are gy = g2 = (0.15,0.14,0.17) for the Player
1.

FLP problem

max sy + 52

subject to

18081 + 15652 <5 1 — 0.15(1 — )
908 + 18082 <5 1 — 0.15(1 — a)
>0, ac(0,1].

Auxiliary problem

max sy + 52

subject to

5458y 4 46452 < 3 4 0.46(1 — a)
270s; + 545 +0.46(1 — a)
81, 5 >0, ac (0,1

Solution
We have y* = (0.23,0.77) and w(a) = iy @ € (0.1}
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Q12. Matrix games with a fuzzy goal (1/2)

Let the single-objective matrix game G = (S™, S", A) with fuzzy goals where
S™ and S™ denote the compact convex strategy space of Players, such that S™ =
{xeR?, e'’x=1}and S" = {y € R?, e'y = 1}, and where A € R™*" is the
payoff matrix of the game with real entries.

1. Fuzzy goal of the Player I

For any pair od strategies (r, y) a membership function u:(r. y) depends on the
expected payoff XAy. Assume that the degree of satisfaction increases linearly,
we have

0, XAy

where a and g are the best and the worst degree of satisfaction to the Player 1.
respectively. These extremal values are determined by

@ = mMAXMAXXAY = maX maxa;;
7 €N JEN,

a minminxAy = min min a;;
= 1ENm jENn

The membership function of the fuzzy goal is of the shape

Player T

7 e ——
! d

2. Player I's maximin solution
Tueorem 0.1 (Maximin solution). For a single-objective two person marrix
game with a linearly fuzzy goal function, the Player I's maximin solution w.rt. a
degree of achievement of the fuzzy goal is equal to an optimal solution to the LP
problem
max A
subject to

A eN,)

ex=1, (e, x cR™),
0.

Proof : Nishizaki and Sakawa (2001), p. 39. O

4. Fuzzy goal of the Player 11

For any pair od strategies (r, ¥) amembership function j(x, v) depends on the

expected payoff xAy. Assume that the degree of satisfaction increases linearly,
we have

1, XAy

w(xAy) = %" 4

0, XAy > a,
where a and a are the worst and the best degree of satisfaction to the Player II,
respectively. These extremal values are determined by

a MAX MAX XAY = MAX MAX a;;
=y N JENn

a min minXAy = min min a;;
z ¥ iENm JENn

The membership function of the fuzzy goal is of the shape

H Player IT

XAy

Proof : Nishizaki and Sakawa (2001), p. 41. O

5. Player II's minimax solution

TueoREM 0.2 (Minimax solution). For a single-objective two person matrix
game with a linearly fuzzy goal function, the Player II's minimax solution w.rt. a
degree of achievement of the fuzzy goal is equal to an optimal solution to the LP
problem

min A

subject to

L (Za,,y.—a) <A+ 1,(i €Nn)
a—a =

éy=1, (e,ycR"),
y=o0.
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Q12. Matrix game with a fuzzy goal

(212)

3. Numerical example
In the Cook’s example, a 3 x 3 payoff matrix is given by

2 35 1
A -1 -2 6
0o 3 -1
We have @ = 6 and 2 = —2. Then, we have to solve the LP problem
max A
x
subject to

2ry — a9 + 2 > BA,
5r1 — 2r2 4 3x3 + 2 = 8A,
1 +6x2 — 3+ 2 > 8A,
ex=1x>0
The results of Player I are
Cptimadty ik fasny gl Flayee Tf

iz [ A,

ERMEEN)-x - s (o - ) = 2, (B[] .3 - weh ) e - ) e B, (RER]D. - mw) f Gal-ow) s L,

et ol 4, Wl ®, X2 i 0, K3 8, (ud, b, 0k 43D

ChGEXRES, (0l DoB05, w2 e O L2, 0 e O 0 D 4B 3LEE DD

6.  Numerical example
In the Cook’s example, 2 3 x 3 payoff matrix is given by

We have a = 6 and a = —2. Then we have to solve the LP problem
r;lj\n A
subject to
2y + 5y +us + 2 < 8(1 4+ A),
—yy — 2y + 63 + 2 < 8(1 + A),
3y —ys + 2 < 8(1+A),
ey=1,y=>0.

The results of Player I are

Cntewity ek feesy gl (Flagwe 1D
Wt {2
CALEAD Dy ow) 24w aw) & Ao L, CREIR)) y- o) JQobcamrd o A <0, (RIED) )7 e S Qo aw) s Ao R,
Ylogtoglo L yis 6, y25 0, y355 8), (y2, 92,70, 2))

(0L SAEETS, (YL~ 0,635, Y2 0., Y3 0,375, AL S45ETS} )
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Q13. Multi-objective matrix game with

fuzzy goals (1/2)

Let the multi-objective matrix game G — (5™, 5% Ag,..., Ar) with fuzzy

goals, where 5™ and 5™ denote the compact convex snméy spaces of Players.
such that 5™ = fx € BT, e'x = 1] and 5" = [y ¢ R?, 'y = 1}, and wher
the Als € R™*" are the payofl matrices of the game with real entries.

1. Fuzzy goals of the Player I
The Player is supposed to have a fuzzy goal for each of the objectives. For any

pair od strategies (x, y) a membership function p(x, ¥} depends on the expected
payoff xA,y. Assume that the degree of satisfaction increases linearly, we have

1, XAy = @

HlxAgy) = ';:% ag S XAgY £ ag

0. XALY = gy,
where a; and a; are the best and the worst degree of satisfaction to the Player I
respectively. These extremal values are deiermined by

dp = MAXMAXXALY = MAX MAX a; ;5
& x oy «} = e s akij
gy = MiNmMinXAzy = min min agg;
= x ¥ S S

The membership function of the fuzzy goals is of the shape

g ol
o

0 0
0 ,

2. Bellman-Zadeh fuzzy decision rule
According to the Bellman-Zadeh symmetry principle, afwzy decision set is
achieved by using an appropriate aggregation of the fuzzy sets.

Dermrrion 0.1 Let X be a set of possible actions, {C‘j(j < My} aser of fuzzy
objectives, and {Cy(5 € Wy, ) the decision set is defined by

o~ (e)n(fe)
with MF g, @ X +— [0, 1] given by

nglz) = (Jf:\ #‘;-J[r.‘) A(z\jpa[r})

The MFs of the aggregate fuzzy goal can be expressed as
plz,y) = ;Tn_;‘rg{mmm}

. Hence, we have with linear MFs

Ef o)

il g T Lk T

pl,y) = min

5. Fuzzy goals of the Player I1

The Player is supposed to have a fuzzy goal for each of the objective. For any
pair od strategies (x, ¥) a membership function uy(x, ¥) depends on the expected
payoff XAy, Assume that the degree of satisfaction decreases linearly, we have

1, xAgy < o
plxdey) = ¢ S o SxAsy £

0, XAy = ag,

where a; and a; are the worst and the best degree of satisfaction to the Player 11,
respectively. These extremal values are deermined by

ap — mMAXMAXXAgY — MAX MAX ak,gj

x ¥ BN 75N T
ap = MminminxAzy = min min ag ;;
= Ay = I Itk

The membership function of the fuzzy goals is of the shape

wopull v gl
N .,
Ay [ T 0 XAy
L] -5 i -5 ) 5

5 7] T

6. Player II's minimax solution

Tueorem 0.3 (Minimax solusion). For a multi-objective two person marrix
game with a linearly fuzzy goal functions, the Player II's minimax solution w.re.
a degree of achievemenr of the fuzzy goals is equal to an optimal solution 1o the
v+ 1 constraints LP problem
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Q13. Multiobjective mat

fuzzy goals (2/2)

rix game wi

3. Player I's maximin solution

Tueorem 0.2 (Maximin solwion). For a multi-objective two person marrix
game with a linearly fuzzy goal functions, the Player I's maximin solution w.r.
a degree of achievemen: of the fuzzy goals is equal 1o an oprimal solution to the
v+ 1 constraints LP problem

max A
>y
subject 10

ﬂ,) > A (j € Nn)

3

) > A, (5 €Na)

;

r_x,) > (G € Na)

€x=1, (e, xcR"™),
x>0

Proof : Nishizaki and Sakawa (2001),p. 48 O

4. Numerical example
In the Cook’s example, three 3 x 3 payoff matrices are given by

2 5 1 -3 7 2 8 -23
Ay 1 -2 6 |.42 0 -2 0 |.As 5 6 0
0 3 -1 3 -1 -6 -3 1 6

We have a; = 6, az
have (o solve the LP problem

Gy = Sand gy = -2, g5 = —6, ay = —5. Then, we
max A
oy
subject to
> 8A,

22y — 13 42
51y — 2524 3234 2> 8A,
Iy 4613 13428

~3ry 433+ 6> 13\,

Try— 213 - 1346
2ry — 63+ 6

8r1—5r2-3r3 452>
2ry 462 41345
3ry 4613452

ex=1,x>0

‘The optimal solution of Player I is ry = 0.59928, x; = 0.15027, r3 = 0.25045
with a degree of satisfaction of 35.1 per cent.

UL Do ) 2 (N1 o) 2, CRICETE) -} £ D ) 5 3, EORLENY].3 o) F a1 <o) 2
UPULRND e o) G ) o X, (OIS o) £ a0, OFECN)] 5 ) G ) 2.
a N a

Meadent b e 0200, €1h 8], Gk, 13, w0, ME

(1301030, [x0 =€, T93284, ¥3+0. 133308, 33 = 6. 3300, 1 = €. 303300)

min A
LR

subject to

1 = ,
i — = hfiel
R (?_:1%.}5 21) < hficHNy)

2 (S )
—— (D azyy; —m ) = A(ic M)
LN

g —

1 - )
ﬁ(z arijvy — Qr) = A (i€ Hm)
- — o,
=1
ey =1, (e.yER®),
y=o.

7. Numerical example

In the Cook’s example, three 3 x 3 payoff matrices is given by

2 5 1 -3 7 2 8 -2 3
A= -1 -2 Az=| 0 -2 0 | A3=| -5 6 0
o 3 -1 3 -1 -6 -3 1 @
We have ay — 6, az = 7, ag — 8and a) — -2, a; — —6, a3 — —5. Then, we
have to solve the LP problem
min A
¥A
subject to

yp + Sy +ya + 2 < BA,
—yy — Jyz + Byg +2 < 8A,
Byp —yz +2 < BA,

—3uy 4 Tz + 2ys + 6 < 134,
—2u2 + 6 < 13A,

3yt —yz — Bys + 6 < 134,
Byy — 2uz £ 33 + 5 = 13A,
—Bun 4 6y 45 < 134,
—3y1 + w2+ 6yz +5 < 134,
ey=1y=>0

The optimal solution of Player IT is y; — 0.38462, y — 0.38462, y3 — 0.23077

with a degree of satisfaction of 61.5 per cent.

Optiaty wtfkfezy ol Flone 11

- s,
CRAIEED ¥ -l {ubd i 3 L CRLITEIN. ¥~ 003 ol v 3 3, CRALTIN.Y - amrd 4 (bl —ast) 5 3,
RPLLIIN.y -} f {ab? 3} o L CEPILF].3 wrdd ] (4B w2 o 3, (RILE]]x - mrd) 4 (abT ) < 3,
CA[CL10. T £ (R ) ¢ L, QRN(LED - ) AR ) & 3, (ROLCN-Y - W) G - ¢ A,
Flagterio L vle boyte 89 ¢ 0 Ayl a2opl A0

o BRLSAD [F140FHELY, T 1LY, T = DAY, 4 s
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Q14. Multiobjective ma
uzzy payoffs and fuzzy

rix game with
goals (1/3)

Let the multi-objective matrix game & = (S™, 8% A, A;) with fuzzy
goals and fuzzy constraints, where 5™ and 5™ denote the compact convex strategy
spaces of Players, such that 5™ = {x ¢ BT e'x = 1} and 5" = [y € BT, ey
1}, and where the Ay, 's € B™=" ame the payoff matrices of the game with fuzzy
entries ag; € F(R).

1. Characterization of the fuzzy expected payoff

Let the fuzzy payoffs for each objective & € N, have the following LR-
representation a i (ki ay e “J;-u]“" The mean value is o ; and
@ 5o O ¢; wre the lefl and right spreads, respectively. Using mixed sirategies,
a fuzzy payoff is extended to a fuzzy expected payoff.

Dermimion 0.1 (Fuzzy expeceed pavaff). For any pair of mixed strategies (x,¥),
the k-th fuzzy expected pavoff of Player 1 is

- m m n m w
ALY (Z Z Ok ij Fillje Z Z 35 TiYj Z Z ﬂ#.ijz!y)) .
i=1 j=1 =1 j=1 =1 j=1 LR
The MF is such that
Bagyt De [0.1],

where Iy, is the domain of the k-th payoff for Player 1.

LR-representation

Left spread (L) Right spread (R)
Ol Py

-a“ +*
B By Y Bty

2. Fuzzy goals of the Player I
The Player is supposed to have a fuzzy goal for each of the r objectives. For

any pair of mixed strategies (x, ¥) a membership function is denoted by pz,_for
the k-th payoff py. Assume that the degree of satisfaction increases linearly, we
have

L, e =g

H(Gk[ﬂk]) Bk EpeSar

0, pr < @y,
where a; and @, are the best and the worst degree of satisfaction to the Player I,
respectively. The membership function of the fuzzy goals is of the shape

k
ay e

3. Fuzzy payoffs
The MFs of the payoffs are expressed as
Peloky oy )
ﬂxl 13
(g il kg tag PR -
w{des(pe) S e P . Pk € [akgj, akdj + “Je-u']
u
0, pg not € lagi; — ag;. ary — a,::l.j

» P € [agij — apj ok5)

4. Extension Principle

_ Let a Cartesian product of universes be X' = Xy ... » X, and r fuzzy sets
Ay, A definedon Xy X, X respectively. Let f be a mapping from X
to the universe ¥, such that y = f{xy. 2., zr).

DerFmvrrion 0.2 The extension principle (Zadeh, 1963197 5) allows to define a
Suzzy set Bon'Y srough f from the Ay s (k € [ such that

B {(y.yé[y)'.\g P S g x}.
where

i) sup;;, _‘.,:,,xmin{y_‘;,(:{.‘....,y_,,-r-:'x,-]}. e
0, otherwise

Example 1: Lzt A, B be two fuzzy numbers. Using the extension principle
the four hasic arithmetic operations « € {+, —, . /} onreal numbers are extended
to FNs by the expression

Hii.

sup minfi 5(c). n5(4))

Example 2: For ordering r FNs Ay, ... A, we consider a priority set P on
{Ay,.. A}, suchad P A | is the degree to which Ay is ranked as the greatest
FN. Using the extension principle, P is defined for each k € [, by the ex pression

F[;ik) sup m'i‘n ;i.-(u.-}.
iEN,
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Q14. Multiobjective ma
fuzzy payoffs and fuzzy

rix game with
goals (2/3)

where the supremum is taken over all (w1, ..., ur) € R such that ug > u; for all
IR

Using the extension principle the MF of the k-th expected payoff XA,y can be
represenied by the expression

Prapy(p) = sup minpg,  (pi), P € R
PPy ’

5. Degree of achievement of the aggregated fuzzy goal
Dermrrion 0.3 (Degree of achievemen of a fuzzy goall. For any pair of mixed
straiegies (x,¥), let the k-th expected payaff be x4 gy and k-th fuzzy poal be G
An achievement siate of the the fuzzv goal is expressed by the imtersection of the
Sfuzzy expected payoff and goal. The MF af the fuzzy set is

iz (P) = 11'1'ln*llﬂ,:\,ﬂ,[ﬁv)-#&|= [P}}-

where p € Dy is a pavoff of Player I A degree of achievement of the k-th fizzy
poal is defined as
Ao (P7) = WA ey

L \

Fuzzy ohjective

Bxy)

o a P i
The MF of the aggregated furzy goal is fig azg) (p*).

6. Player I's maximin solution
Dermomion 0.4 (Maximin solwion wr.t. a degree of achievement of the ag-
grepated fuzzy poal). For any pair of mied sirategies (x,¥). given a degree of
achigvement of the aggregated fuzzy goal fiy uy y(p"). the Player I's maximin
value w.rr. a degree of achievemenr of the aggregared fuzzy goal is
MAX MN ik apxy) (07).
ER
Then we have the expression
maxmin min max mln{y,,;*,[mL ng, (ox) }

Tueorem 0.5 (Plaver I's maximin solwion).  For multiobjective two-person
mairix games, with linear MFs of the fuzzy goals. and linear shape functions

of FNs, the Player I's maximin solution w.re. a degree of achievement of the
aggregated fuzzy goal is equal to an optimal solution w the nonlinear programming
problem
max o
xa
subject to
YR T (o + a;,ej:-‘-fiyj —

— — o VueR® kch,
P h i

fx =1, (e xcB™),
x =0

Proof : Nishizaki and Sakawa (2001). p. 65 O

For solving the problem, the algorithm consists in different steps © 1) the use of
the relaxation procedure due to Shimizu and Aiyoshi (1980) by taking L points
y.1 € M satisfyinge'y; = 1. y = 0 and obtaining the optimal solution (=, #£);
2) r minimiz ation problems have then to be solved. The variable transformation by
Charnes and Cooper (1962) used for such linear fractional programming problem,
induces LP problems.

7. Numerical example
Formulation

A multiohjective two-person matrix game (from Cook, 1976)with fuzzy payoffs
and fuzzy goals is analyzed in Nishizaki and Sakawa (2001, p70). Each Player
has three pure strategies. The LR-representation of the fuzzy payoffs is

(6..1,.1)

(5.5,.5)  (1,.8,.8)
(3.5, (-1,8.8)

(-3, 8, 8)

The fuzzy goals Gy, Gz, G for the three objectives of Player | are represented
by linear MFs
1, ;=65
e lp) =9 (p+1)/75 —1<p =65
0, pp =1

1, pz = 5.5

s lp2) =4 (P2 +2)/75 -1<p <65
0, pp=-2
1, p3 =58

ng,(pa) = (ps+1)/6.8, -1 < py <58
0, ps= -1
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Q14. Multiobjective matrix game with
fuzzy payoffs and fuzzy goals (3/3)

Sakawa’s direct method : Player 11
Using properties of some constraints, the initial nonlinear programming prob-
lem for Player 11, Sakawa (1983) retains the following equivalent programming

Shimizu and Aivoshi s iterative method
The solution for Player 1 is obtained after three iterations. We have

. 5 problem
£y = 4434, 12 = 3178, £y — .2388. max A
¥
Sakawa’s direct method : Player 1 subject to
Using properties of some constraints, the initial nonlinear programming prob- Plileksy +ay )y —ag A ieN. kel
. . = . - - = A LE 1 L=
lcmhfhnr Player I, Sakawa (1983) retains the following equivalent programming D710y + Ak — g - ’
probiem — ey =1, (e, y € B")
X0 y=0.
subject to The results for Player I1 are obtained with a degree of satisfaction of 58.5 per cent.
m oy ¢ -
=1\ Bk + @ 0 )T — ay :
Z: :1 .1.? kif =a, 5 C Nn1 [ c Hr
2 1 B 4;Ti g — g Mtinimize[(1,
' — T (RI[[3]]+ EAL[2]]) . - e} / (EL[[1]].¥ +abl-amwl} 5 A,
ex =1 (e, xcB™) (ORALE21]+ EALI211) .3 - vl / (EAL[2]].7 + abl-anl} = 3,
— (GRALI31] + EALAD) oy - sk} / CEALL2]]. + abd-and) 5 2,
= CQR2LIA1] + E2LO111) 7 - a2} / (E2L[1]].y + ab2-anet) 5 A,
The results for Player | are obtained with a degree of satisfaction of 24.6 per cent. e R AL Dy e T s 2y
d ((R2[[3]] + E2LI3]1) .y - ame2} / CE2[[3]].y + ab2-ame2) = 2,
C(RALTL1] + EILCAID) .y - aned} £ (EILL].y + ab3-ad) 5 2,
CORILI2N] + EFCI210) .7 - awd} / (EI[[2]]).¥ + abd-awd} = A,

C(RIL[3TT + EIC[3DD) ¥ - aned} / (EI[[3]] .5 + abd—anrd) = X,

i w4,
CCMIEET] » FL[LT 0} - e} £ {FLLELIE o - ) = 3 yleyZoydo 1, ylz 0, y2z 0, y3 = 0}, {yl, ¥2, y3, A}]
CEBANEY] + EATT2TNE-0 - aneh FAELLEZNN- 0 + ol - el i 4, Nibinimize::incst : MMinimize was unsble to generate any iritial points satisying the inequalty constrainks
CENIN[AT] + FLIYTN}-x - aml} F{FLLIF]]-x + bl - aard) 5 @, o Ie ) E 63202 (1. - =l = L y3) +6.1¥3

CERSELA]] « PHIATRF - - s} AFFLIATE - o nlach - mard) o a,
GEBR[Z]] + FRLLE]IN} - - wwT} FAFELIE]N-x + alel - worl] o =,
CEBALEA]] + FERLOIINE- % - aaky ¢ (R (I3]0 - + altck - awrd) & @,
CEBNLERT] + EF[LI]RF <M - 203} FATELILI] N + 0 - a8r1) & 4, {0, $B5032, (¥l -+ 0415622, y2 - 0. 445508, y3 — 0.134489, 1 - 0, S85032))
CEBILLR]] + FR[LRTNE-x - ¥} FAFRLL +ald - warl) 3 @,

GEBAL[3T] + ERICEIN: - - w03} SAFEL ol ) kA

alsxFexla 1, Ths B, =2 5 B, x1 s By, |x1, x2, =, o}

al pairks may provide & betber sohition.

1D, 28E0EA, (xl = 0. ASATR, w5 D ALREAT, ) 0, B, T 0. B4E0Ed] )
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Q15. Fuzzy quadratic programming (1/3)

The symmetric approach by Zimmermann |23] may
be used for solving fuzzy programming problems. For
this approach, membership functions are defined, by
using a given aspiration level of the decision maker
(DM) for the objective, and accepted tolerances for
the objective and the constraint functions. An equiv-
alent crisp QP problem is obtained with a quadratic
constraint. This particular QP problem can be solved
by using van de Panne 's two-phase method [18]

D.1  Fuzzy QP problem

The fuzrzy QP problem may be defined by a convex
quadratic objective function together with a bounded
feasible region such as [2]

ming ©'x + ]ax"Qx

sub}ecl o

Ax=h, iel,

x =0,
wherec, x e R™, b € B™, A € R™*", () € R"=",
The vector A; denotes the ith row of matrix A. The

symmetric matrix () is supposed to be positive semi
de finite.

D.2  Symmetric fuzzy QF problem

According to Zimmermann [23, 24], the symmetric
version of the fuzzy QP problem is

Find x

such that

e'x + %X'Qx > 2,

Ax by, ie M,

x = 0,
where zp € R is the aspiration kewel of the DM and
Pa. I, i = M, the tolerances for the objective and the

set constraints, mespectively. The membership fune-
tion for the objective is defined by

1, z < 2,
palz) =9 EHELE s <r<xtm
0,z 2+p
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Q15. Fuzzy quadratic programming (2/3)

The membership function for the ith (i € M) con-
straint is also defined by

], J‘.jx < bl',
pilAsx) Bt AX b < Ax < b+ g
0, Ax =8B +p;

An optimal solution is obtained by solving the crisp
equivalent QP problem

Find o
such that

1
t’erK'erﬂ‘pn:i:u t o,
Ax +op < b+, i€ F,

x =0, a=c|il].
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Q15. Fuzzy quadratic programming (3/3)

The following numerical example is taken from Bec-
tor and Chandra [2], pp.77-78. The fuzzy symmetric Tnax a
QP problem is subject to

ry + 2o + 427 4 dry2n + 222 + 2190 < 54,
A7y + hrg — 2o = 18,

ory +dry — o = 19,

Ty + T2+ 3 < 33,

Find (1, x2)
such that

Ir) + w9 + 47F + 4775 + 223 < 51.88,
41 + Swz = 20, Ty, T2 =0,
Sxy + dzg = 20, a € [0, 1].
T+ Fp E 3':'.
Ty, Ta = (L The optimum solution of the QP problem, given by the

multiplier method is x] = 0018, »; = 3.7253, o*

. B599. This result tells that the solution is obtained
Let the tolerances be pg - 212, m _21 Pz with a satisfaction level of 86 per cent

1, pg = 3, the equivalent erisp QP problem is
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Q16. Numerical example for the
single objective FP problem

tensors A € B3 and B £ R™**® for Players |
and 1, respectively are

~ (180,5,10) (156, 6,2)
ALg ( (90,10,10) (180,5,10) )
and
: = (200,10,13) (132,4,6)
In the following two players example %, Players [ and Bir (120,5,10) (156,6 6
Il have two pure strategies. The goals of the two play- o R
ers are furzy. The payoffs are triangular fuzzy num- The right spread matrices are

bers. The LR-representations of the payoffs are the
10 2 15 G
= (m 10) and 28 (10 G)
The optimal solutions of Player [ are 2] = 2366 and
74 = .T634 wort a degree of attainment of the goal
7 of 75.3 per cent. The optimal solutions of Player 11

are y7 = .2063 and y5 = 7037 wrt a degree of
attainment of the goal of 39.4 per cent
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Q17. Numerical example for the
multi-objective FP problem (1/2)

In the following two players example '!,'2. Players |
and II have respectively two and three pure strategies
and three different objectives. The goals of the two
players are fuzzy. The payoffs are triangular fuzzy
numbers. The LR-representation of the payoffs are the
tensors A" € ™3, k€ Ny and B € R*¥9, [
Py for Players | and 11 respectively, are

-3 (2,1,1.5) (0,0,1.5) (1
(4,1.5,1.5) (1,.5,.5) (3,1..5)

_g (2,1,1.5) (1,.5,1) (4,1,1.5)
(1,.5,.5) (0,0,1.5) (1,1,1)

The right spread matrices for Player I are
1 1 1.5 1 1 .5
Al AT
4 (1_5 1)=3"ﬁ (1.51)'

1.5 15 1
Al
= ( 1.5 5 .5 )
The right spread matrices for Player 11 are

Al 11 1 2 1 15 .5
S (1 1 _5)&“ (1 5 1)‘

[
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Q17. Numerical example for the
multi-objective FP problem (2/2)

~

The optimal solutions ' of Player | are »} — .6438
and r3 — .3562 w.rt. a degree of attamment of the
goal ™ of 58.5 per cent. The optimal solutions of
Player Il are y; = 5226, y3 = 3149 and y3 = .1625
w.r.L a degree of attainment of the goal of 32.5 per
cent.

/
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Q18. Application to economics

(Owen, 1975;Molina & Tejada,
2006;Nishizaki & Sakawa, 2000): multiple DMs pool resources
to produce goods in a fuzzy environment; the total revenue
from selling is maximized subject to constraints ->

(Chen & Larbani, 2006):
optimal strategies in product development of nano-materials
with MADM (Multiple attribute decision making)->

(Park, 1987; Lee & Yao, 1998;
Chang, 1999; Lin & Yao, 2000; Chen & Wang & Chang, 2006):
Imperfect production processes ; fuzzy inventory cost, fuzzy
demand and production quantity, fuzzy quality of goods

(Greenhut & Greenhut & Mansur,
1995): fuzzy industry size, fuzzy interdependance,
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Q19. Computational techniques for fuzzy

programming problems

™

1965 (Zadeh):
(Cook): zero-sum games with multiple goals

- (Butnariu): fuzzy 2-person non cooperative games;
solution concepts for n—persons fuzzy games

(Dubois & Prade): LR-representation for computations
(Chanas): parametric programming in FLP
(Buckley): uncertainty of strategies and multiple fuzzy goals

(Campos): solving matrix games with fuzzy payoffs based on
ranking functions and LP methods.

(Sakawa & Nishizaki): multiobjective matrix and bimatrix
games with fuzzy payoffs and fuzzy goals

(Sakawa): large scale interactive fuzzy multiobjective
programming

(Bector et al.): LP methods for solving matrix and bimatrix
games

/
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