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Abstract: The complexity of the phenomena observed and the massive quantity of recorded high-dimensional 
data (such as with climate patterns) justified the use of automatic data-driven exploratory techniques. Machine 
learning allows us to analyze and predict such volumes of complex data. Machine learning is widely used in 
astronomy, bioinformatics, medicine, meteorology. The search for ever greater efficiency of the necessary 
calculations combined with advances in computing led researchers to design hybrid systems using more efficient 
approaches in certain features and functions of machine learning. Zhang et al. [Int. J. Forecast. 14 (1998) 35-62] 
described artificial neural networks as ‘data-driven self-adaptive methods’ with few assumptions about the 
pattern. Machine learning proved to have faster performances with metaheuristic algorithms like artificial 
immune systems (AIS).  An immune model has the characteristics of a complex network whose nodes interact 
dynamically. The immune principles consist of mechanisms for defense against external threats (foreign 
antigens). This paper introduces the main concepts of such hybrid systems. Two types of complex applications 
from the literature illustrate the scope of such an approach. The first application is to solve a multi-objective 
optimization problem. The second application relates to the prediction problems of landslide displacements. 
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1 INTRODUCTION 
 
The requirement for in-depth and automated 
observation of complex phenomena resulted in a 
massive and varied set of data to be exploited. To 
this set was added mechanically other generated data 
accompanying and resulting from a multitude of 
connected objects (e.g., smartphones, cameras, 
personal computers, wireless sensors networks). 
Various fields of activity such as biology, 
astrophysics, finance, and marketing gather such 
large and complex datasets. Gudivada [Gudivada et 
al., 2015] gave notably that example of NASA’s 
solar dynamics observatory (SDO) which captured 
its 100 millionth image on January 2015.  All in all, 
the result is an accelerated accumulation of all kinds 
of databases with high-dimensional, heterogeneous 
and complex information.  

The attractiveness of this cheaper data 
compared to traditional human surveys inevitably 
questioned the specialists on the capacities and the 
performances of the existing means of calculation. 
The task of imagining an immense and powerful 
system was all the more difficult because it was 
necessary to consider a long chain of processing 
including generation of data, acquisition of these 
data, storage and statistical exploitation. This 
exploitation, using traditional and more advanced 
methods, should allow the understanding of a 
complex domain, and if possible a projection in 
evolution. Most traditional data mining algorithms 

use sequential and centralized calculations [Fayyad et al,1996]. 
However, some algorithms allow a parallel computation 
distributed on several machines that increases the speed of 
computations. These new processing methods, in addition to the 
advances in computer science, will not be enough to counter the 
new challenges of large databases. Renewal will, therefore, go 
through a paradigm shift. That of machine learning will prevail 
[Cantú-Paz, 1998] [Cantú-Paz and Goldberg, 2000] [Luo and El-
Baz, 2018]. 

The recent definition of 'big data' comes in four words 
starting with the letter 'V' (The so-called 4 Vs). These words that 
characterize these big datasets are data ‘Volume’, ‘Velocity,’ 
‘Veracity,’ and ‘Value’ [Gudivada et al., 2015]. The volume of 
the current data is measured in terabytes turns in petabytes 
according to the observers. The major discrepancies in data 
quality are attributable to their possible contradictions, 
incomplete character, imprecision, subjective nature, redundancy,  
bias and noise [Gudivada et al., 2015]. The big data operators are 
thus confronted with trade-offs among desired scalability, 
availability, performance and security. 

Examples of big databases can be found in the field of 
security. Acharjya and Kause [Acharjya and Kause, 2016] 
reviewed big data analytics. In this field, the data to be used are 
monitored in real-time using video detection from surveillance 
cameras. Sunny [Sunny, 2017] reviewed different methods for 
fire detection [Foggia et al, 2015]. The methods focus on spatio-
temporal features and specific properties of fire like color, shape 
variation, motion. They are part of a multi-expert system where 
this information is combined. The fire detection process consists 
of data generation, feature extraction, and classification 
according to a naïve Bayesian classifier (i.e., a probabilistic 
machine learning algorithm) [Borges and Izquierdo, 2010]. 

Data analytics methods have different objectives than 
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traditional analyzes. Trends in big data analytics 
were studied by Kambatla et al. [Kambatla et al, 
2014] and Ma et al. [viewed]. The goals of big data 
analytics include mainly dimensionality reduction 
and discovering hidden features. Dimensionality 
reduction (DR) speeds up data processing. DR can 
be obtained by using linear methods like principal 
component analysis (PCA), linear discriminant 
analysis, or independent component analysis (ICA) 
[Hyvärinen, 2013]. The efficient methods of data 
mining are reported by Tsai et al. [Tsai et al, 2015]. 
The methods include sampling and data 
condensation, density-based and grid-based 
approaches, divide-and-conquer, incremental 
learning, etc. The process of knowledge discovery 
(KDD) in databases consists of the following 
operations: gathering, selection, pre-processing (e.g., 
detecting, cleaning, filtering, etc), transformation 
(reducing the data complexities, sampling, coding), 
data mining, and evaluation [Tsai et al, 2015]. 
Representative algorithms for data mining problems 
are clustering and classification [Shalev-Shwarz and 
Ben-David, 2012]. 

This paper introduces for didactic purposes the 
paradigms and algorithms of machine learning and 
related approaches. The paper attempts to show the 
ability of these methods to deal with complex 
problems. Section 2 deals with the concepts and 
techniques of machine learning for feature selection 
and classification. Section 3 addresses an algorithm 
inspired by the principles of the human immune 
system. This section is on immune system prin 
ciples, implementation of the algorithm, with 
application to classification problems. Section 4 is 
devoted to the study and prediction of complex 
phenomena of real life. The application to illustrate 
this issue is the prediction of landslides with 
important material and human issues. 
 
2 MACHINE LEARNING 

TECHNIQUES FOR FEATURE 
SELECTION AND DATA 
CLASSIFICATION 

 
The adoption of innovative business practices has in 
theory been linked to an opportunity for increasing 
the total value in a given market [Bakos, 1998]. 
Scott-Morton [Scott-Morton, 1991] explored the 
influence of information technology in the 1990s. 
Business Opportunities and Technology Advances 
are two forces that could affect the structure of a 
market. The combined effect of these forces will 
drive value chain transformations, thus causing the 
emergence of new business models and market 
structures. 
 
2.1 Statistical Machine Learning 
 
The instruments of statistical learning to understand 
data and modeling are of two kinds of supervised 
and unsupervised learning [James et al, 2014].  

James et al. described supervised learning as a process of 
constructing a statistical model involving estimating and 
predicting an output from one or more inputs. The main classical 
methods in this category are regression and classification. The 
distinction between regression and classification is due to the 
quantitative (numerical value) or qualitative (value in one 
category) nature of the variables used. Indeed, to predict a 
qualitative response for an observation is equivalent to 
classifying this observation by attributing it one category.Thus, 
linear regression of least squares is used for a quantitative 
response, while logistic regression can correspond to a binary 
qualitative response (in two categories) [James et al, 2014, pp.28-
20]. Other classifiers are linear discriminant analysis and K -
nearest neighbors. 

The goal is to predict a response y (an output) measured on 
n  observations by using a set of p  associated features (inputs, 

attributes or predictors)  1 2, , , pX x x x   measured on the 

same number of observations. Formally, we may write the 
regression model as  1

ˆˆ , , py f x x   where f̂  denotes an 

estimate for f  and ŷ  the prediction for y . For a multiple 
linear regression, regressing y  on X , we write the linear 
relationship as the approximate model  

0 1 1 p py x x       . The logistic model formalizes 
the relationship between the conditional probability 

   0Prp X y k X x    and the p  predictors 

 1, , pX x x   either by retaining the following logit or log-

odds formulation 

 
  0 1 1log

1 p p

p X
x x

p X
  

 
      

  

A naïve Bayes classifier is a probabilistic machine learning. 
It can be used in a variety of classification tasks supposing that 
the predictors (or features) are independent. Suppose m  
categories (or classes) 1 2, , , mC C C . By Bayes’ theorem, the 
posterior probability (i.e, the conditional distribution of y  given 

X  for category kC ) is 

     
 
k k

k

p X C p C
p C X

p X
  

where the probability of the predictors X  is given by 

     1 pp X p x p x   . The posterior probability 

 kp X C  of X  conditioned on kC  is based on more 

information than the prior probability  kp C . The class for 

which  kp C X  is maximized is the maximum posteriori 

hypothesis [Han et al, 2012, pp. 350-355]. 
The K -nearest neighbors (KNN) applies when the required 

conditional distribution required for calculation is not known and 
must be estimated. Other classifiers like SVMs (Support Vector 
Machine) and feedforward NNs (Neural Networks) are used to 
classify images [Lemley et al, 2016]. 
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Extraction Techniques
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immune system correspond to systems that are 
particularly compliant with the complexity of the 
phenomena to be described, analyzed and modeled. 

daptive models have decentralized structures 
for parallel and distributed computing. Immune 
systems have the ability of learning to recognize 
patterns, to remember the patterns encountered, and 
to deduce an overall behavior of local situations 
encountered [Dasgupta, 1999

Dasgupta and Gonsalez, 2003
]. 

Immune System 

Nomenclature 
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AIS 

Antibody (Ab) 
 

(Ag) 
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IS 
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Lymphokines 
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Plasma cells 
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Artificial immune classifier
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in response to an antigen;
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defenses.

The immune system defends a 
foreign pathogens. Aickelin and Dasgupta [
and Dasgupta, 2005] present the distinction between 
two types of immune systems (ISs). In
acquired) IS refers to unchanged existing 
mechanisms for the detection and destruction of 
invasive organisms. Adaptive IS, on the other hand, 

to respond instantly to recognized invasive 
organisms (presented in the past and memorized).

Figure 2 picture
immune mechanisms on which the 
based. Suppose that a foreign antigen is detected
(top of the figure). 
antibodies receptors in the immune system. 
antibody matches an antigen the corresponding B

is stimulated to 
immune system’s ability to detect 
(unknown) antigens is the negative selection 
mechanism. This mechanism provides a tolerance 

cells (those of the body). The basic principle 
of the selection mechanism is that only those cells 
that recognize the antigen proliferate. 
response adapted to the antigen, T
essential regulatory role.
the clonal selection princip

with high rates 
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systems have the ability of learning to recognize 
patterns, to remember the patterns encountered, and 
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process ([Frank, 1996

Figure 2. Acquired Human Immunological Mechanisms for the 
Defense Against Foreign Pathogens 
[deCastro , and von Zuben, 1999, p. 12])

3.2 Implementation
The areas of implementation of AIS are 

hen et al, 2008
in their chronological order of application: 
(reagent recognition in chemical analysis, image analysis, 
prediction of infections, analysis of medical data, computer 
security) , machine learning
learning, clusterin and data classification), 
(optimization of multivariate numerical functions, multi
objective, combinatorial optimization).

Three types of
AIS: initializing and 
defining an affinity measure between antibodies and antigens, 
configuring selection and mutation processes
2011]. The CLONALG 
de Castro and von Zuben [
algorithms evolve a population towards a set of effective 
detectors. On the other hand, the items of the population interact 
in the immune network
algorithm. These interactions are due to the suppression 
mechanisms of items that are identical or similar to those of 
training data (within a threshold) [
a) Encoding Scheme of Cells

problems, antibodies and antigens are strings of binary (or 
real) numbers for which the length is the number of 
variables and the position the variable identifier. 
variables (or cells) can be compared by a simple Pearson 
correlation coefficien
Other distances can the standard Euclidean metric 
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problems was adapted later to solve optimization problems
Castro and von Zuben, 2002
von Zuben [de Castro and von Zuben, 2009
AIS for solving multi
Chu et al, 2008

algorithm by adapting the interpretation o
to the problem of optimization.
steps of an immune algorithm.

Figure 3. Flowchart of the immune algorithm 
from [Chu et al, 2008]
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problems was adapted later to solve optimization problems
Castro and von Zuben, 2002] 

de Castro and von Zuben, 2009
AIS for solving multi-objective optimization problems. 
Chu et al, 2008] describe

algorithm by adapting the interpretation o
to the problem of optimization.
steps of an immune algorithm.

Flowchart of the immune algorithm 
from [Chu et al, 2008] DOI: 10.1016/j.mcm.2008.02.008
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problems was adapted later to solve optimization problems
] [Čisar et al, 2014

de Castro and von Zuben, 2009
objective optimization problems. 
described the flowchart of the immune 

algorithm by adapting the interpretation of successive operations 
to the problem of optimization. Figure 3 
steps of an immune algorithm. 

Flowchart of the immune algorithm 
10.1016/j.mcm.2008.02.008
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best antibodies according to their affinities.
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the flowchart of the immune 
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Flowchart of the immune algorithm [reprint of Figure 1 
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best antibodies according to their affinities. This 
step of the procedure is followed by a cloning operation under 
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either Step 5 or Step 9, depending on the origin of 
the antibodies to be cloned. Step 5 refers to cloning 
of the n  antibodies selected in the previous step. 
The set C  of the clones is placed in a temporary 
repertoire. Step 6 generates new antibodies, which 
can come from complete genetic operations such as 
crossover and mutation. The crossover would get 
new antibodies by mixing their genetic material. The 
mutation that randomly changes the components of 
an antibody makes it possible to obtain a greater 
diversity. The antibody-antigen affinities are 
evaluated at this step. The purpose of Step 7 is to 
maintain the diversity of the antibodies between 
them. This antibody-antibody affinity is obtained by 
comparing the antibodies of the current register with 
best antibodies of the memory M . The antibody-
antibody affinity jAb  can be expressed as 

  1
1j jAb D


   where jD is the Hamming 

distance. Step 8 generates the memory set M . It 
collects antibodies (trial solutions) with high 
antibody-antigen affinity to recognize antigens 
(optimal solutions). In Step 9 the calculation stops if 
the test relating to the stopping criterion is satisfied. 
Chu et al [Chu et a, 2008] also proposed A modified 
immune algorithm combining AIS with the genetic 
algorithm GA with higher search capabilities. GA is 
used as a pre-processor to screen the initial 
antibodies repertoires. 
3.3 Artificial Immune Classifier 
Classification methods consists of two main steps. A 
learning step and a classification step. A classifier is 
built in the learning step from a training set, and the 
model is used in the classification step to predict 
class labels for the data [Han et al, 2012, pp. 328-
330]. The AIS algorithm are adaptive systems that 
found classification methods [Zhang and Yi, 2007]. 
It is used in practice for the detection of industrial 
anomalies or computers. AIS classifier with K-
means belongs to the unsupervised classification 
methods for which training data are not needed . It is 
not indicated to which class each training tuple 
 1, , nx x  belongs. Colanzi et al [Colanzi et al, 
2011] showed that AIS is one of the bio-inspired 
metaheuristics for improving conventional clustering 
methods (such as the K-means algorithm). 
Clustering techniques explore similar patterns and 
collect them into categories or clusters. The 
solutions do not require prior knowledge about the 
data to be clustered. A clustering problem is reduced 
to the minimization of the sum of the Euclidean 
distances between each object and the center of the 
belonging cluster. The optimization problem is 

 2

1 1 1
min

o c n

ij ia ja
i j a

w x c
  

   

where o  and c  denote the number of data objects 
and centers, respectively; iax  is the value of a th 

attribute of i th data object; jac  is the value of a th attribute of 

j th cluster center;  0,1ijw   is an associated value taking 1 

if the object is grouped in cluster j , and 0 otherwise. Zhong et al  
and al [Zhong et al, 2007] proposed unsupervised AIC (artificial 
immune classification) [Zhong et al, 2006] and supervised AIC 
[Zhong et al, 2007] for remote-sensing imagery. Karakose 
[Karakose, 2013] compared the flowcharts of AICs with 
supervised-unsupervised learning models. Karakose proposed a 
reinforcement-based AIC. This approach is similar to a self-
learning scheme using the mechanisms of clonal selection and 
memory cells. Unlike other algorithms, the reinforcement 
learning algorithm calculates the set of probabilities of the 
present state to determine the next state. 
4 COMPLEX PREDICTION PROBLEMS 
4.1 Self-Adaptive Data Driven Methods 
a) Conventional Trading Strategies.  

Abbreviations 
AIC: Akaike information criterion; AR(p): p-order autoregressive 
model; ARCH(q): autoregressive conditional heteroskedasticity model; 
ARIMA(p,d,q): d-degree differenced mixte autoregressive integrated 
moving average with orders p,q respectively; ARMA(p,q): mixed p-
order autoregressive-q-order moving average model; BIC: Bayesian 
information criterion; BJ: Box and Jenkins criterion; CAT: criterion 
autoregressive transfer function; EMA: exponential moving average; 
FPE: final prediction error; GARCH(p,q): generalized autoregressive 
conditional heteroskedasticity model; HQ: Hannan-Quin criterion; 
MA(q): q-order moving average; L-MA: long-term moving average; S-
MA: short term moving average; MACD: moving average 
convergence/divergence; SMA: simple moving average; WMA: 
weighted moving average. 
Machine learning can relate to the time series that are 
available in large scale. A temporal series refers to a 
sequence of ordered historical measures observed at regular 
intervals of time (yearly, monthly, daily, hourly, for 
example). Predicting future values from observed data from 
the past is a common concern of many scientific disciplines 
(meteorology, telecommunications, finance, etc.) [Bontempi 
et al, 2013]. 

The trading strategies are mainly based on a variety of 
weighted MA (WMA, EMA) or non-weighted (SMA) 
techniques, ARMA models, ARCH models, GARCH 
models, as well as logit regression [Dunis and Williams, pp. 
10-20].  
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in the market. Thus, if the S-MA curve intersects the L-MA 
curve from below, a short-term position is taken and 
conversely. A weighted average of last n prices WMA is 
such that the weighting decreases with each previous prices, 
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