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Abstract: Dynamic economic models generally consists in difference or differential behavioral equations. Sev-
eral arguments are in favor of continuous time systems: the multiplicity of decisions overlapping in time, a more
adequate formulation of market adjustments and distributed lag processes, the properties of estimators, etc. The
type of dynamic equations also refer to historical and practical reasons. In some cases of the economic dynamics,
mixed differential-difference equations (DDEs) may be more suitable to a wide range of economic models. The
dynamics of the Kalecki’s macroeconomic model is represented by a linear first-order DDE with constant coeffi-
cients, in the capital stock. Such a DDE, with constant or flexible lags, also occurs in the continuous time Solow’s
vintage capital growth model. This is due to the heterogeneity of goods and assets. In some qualitative study, the
time delay is replaced by the Taylor series for a sufficiently small delay and a not too large higher-order derivative.
DDEs with constant lags may be solved using Laplace transforms. Numerous techniques are also proposed for the
solutions of DDEs, like the inverse scattering method, the Jacobian elliptic function method, numerical techniques,
the differential transform method, etc. This study introduces the block diagram approach with application to ref-
erence economic models, with help of the powerful software MATHEMATICA 6.0. Specialized MATHEMATICA
packages for signal processing are used for analyzing and solving, symbolically and numerically, the continuous
and discrete systems, such as with ”Control System Professional”, ”Polynomial Control Systems” and ”Schemat-
icSolver”.
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1 Introduction

In some cases of the economic dynamics, mixed
differential-difference equations (DDEs) may be more
suitable to a wide range of economic models. The
dynamics of the Kalecki’s macroeconomic model is
represented by a linear first-order DDE with constant
coefficients, in the capital stock. Such a DDE, with
constant or flexible lags, also occurs in the continuous
time Solow’s vintage capital growth model. This is
due to the heterogeneity of goods and assets. In some
qualitative study, the time delay is replaced by the
Taylor series for a sufficiently small delay and a not
too large higher-order derivative. DDEs with constant
lags may be solved using Laplace transforms. Numer-
ous techniques are also proposed for the solutions of
DDEs, like the inverse scattering method, the Jaco-
bian elliptic function method, numerical techniques,
the differential transform method, etc. This study in-
troduces the block diagram approach with applica-
tion to reference economic models, with help of the
powerful software MATHEMATICA 6.0. Specialized
MATHEMATICA packages for signal processing are

used for analyzing and solving, symbolically and nu-
merically, the continuous and discrete systems, such
as with ”Control System Professional”, ”Polynomial
Control Systems” and ”SchematicSolver”.

2 Elementary functional differential
equation theory

2.1 Differential-difference equations

The linear form of a DDE of differential order m and
difference order n with constant coefficients takes the



form 1[7]

n∑
i=0

m∑
j=0

aijy
(j)(t− ωi) = f(t).

The subclass of the first-order DDE will then be writ-
ten

a0y
′(t) + a1y

′(t− ω) + b0y(t) + b1y(t− ω) = f(t),

where f(t) is assumed io be integrable and of bound-
ary variation.

2.2 Solution methods

2.3 Basic equations

3 Continuous dynamic economic
model with discrete delays

3.1 Business cycle Kalecki model

3.2 Business cycle Goodwin model

4 Continuous optimal control mod-
els with discrete delays

4.1 Ramsey’s growth model

4.2 Solow’s capital vintage model

A Laplace transform solution of
equation y′(t) + by(t− 1) = 0

The Laplace transform (denoted by L[.]) method is
used to solve a first-order linear DDE:

y′(t) + by(t− 1) = 0, t > 0 (1)

which boundary conditions are y(t) = 0, t ∈ [−1, 0],
and where b is a constant. We know that2 L[y(t)] =

1The general form is

F

„
t, y(t), y(t− ω1), . . . , y(t− ωm),

y′(t), y′(t− ω1), . . . , y
′(t− ωm), . . . ,

y(n)(t), y(n)(t− ω1), . . . , y
(n)(t− ωm)

«
= 0

2The inverse Laplace transform is given for a suitable c by

L−1[Y (s)] = (2Pij)−1

Z c+j∞

c−j∞
Y (s)estds = y(t)

.

∫∞
0

y(t1)e−st1dt1 = Y (s), s ∈ C, and L[y′(t)] =
sY (s) − y0. Multiplying (1) by e−st, and integrating
from 1 to infinity, we have also∫ ∞

1

y′(t)e−stdt + b

∫ ∞

1

y(t− 1)e−stdt = 0. (2)

Let us examine the two integrals of equation (2).
Integrating by parts the first integral and assuming
y(t)e−st → 0 as t →∞, we obtain∫ ∞

1

y′(t)e−stdt = −y(1)e−s + s

∫ ∞

1

y(t)e−stdt.

(3)
Using a change of variable for the second integral
yields

b

∫ ∞

1

y(t− 1)e−stdt = b

∫ ∞

−1

y(t1)e−s(t1+1)dt1,

= by0e
−s

∫ 0

−1

e−stdt + be−s

∫ ∞

−1

y(t1)e−st1dt1,

= by0e
−s

[
−est

s

]0

−1

+ be−sY (s),

=
by0(1− e−s)

s
+ be−sY (s). (4)

Placing (3) and (4) into (2) yields

sY (s)− y0 +
by0(1− e−s)

s
+ be−sY (s) = 0. (5)

Solving (5) for Y (s) and assuming that s − e−s 6= 0,
we get

Y (s) =
y0

s
− by0

s(s + be−s)
(6)

Theorem 1 [33]. Let f(t) be integrable over every
finite interval such that (i)

∫∞
0

f(t)e−st converges ab-
solutely on the real line Re(s) = c and that (ii) f(t)
is of bounded variation in the neighborhood of t, then∮

(c)
F (s)e−stds =

1
2

(
f(t + 0)− f(t− 0)

)
,

where j denotes the pure imaginary
√
−1 and the

LHS, a contour integral taken along along the line
from c− jT to c + jT in the complex plane3.

3The contour integral is represented byI
(c)

F (s)estds ≡ lim
T→∞

1

2πj

Z c+jT

c−jT

F (s)estds.



From (6), Y (s) may also be expressed as

Y (s) =
y0

s
− by0

s2(1 + b e−s

s )
,

= y0

(
1
s
−

∞∑
p=0

(−1)pbp+1e−pse−p−2

)
.

Applying the theorem 1, we have

y(t) =
∮

(c)
y0

(
1
s
−

∞∑
p=0

(−1)pbp+1e−s(t−p)/ep+2

)
ds

= y0

(∮
(c)

est

s
ds−

∞∑
p=0

(−1)pbp+1

∮
(c)

es(t−p)/sp+2ds

)
.

(7)

Giving that (see [33], p.8)∮
(c)

ehk

kn+1
=

{
hn

n! , Re(h) > 0
0 , Re(h) < 0,

we obtain the solution

y(t) = y0

(
1−

[t]∑
p=0

(−1)pbp+1 (t− p)p+1

(p + 1)!

)
,

where [t] denotes the largest integer less or equal to t.

B Contour integral and definite inte-
gral solutions equivalence

The application of the Laplace transform method to
the differential equation 4

y′(t) + by(t) = f(t), t > 0, y(0) = y0

leads to a contour integral representation solution of
the form

y(t) =
∮

(c)

(
y0 +

∫ t

0
f(t1)e−b(t−t1)dt1

s + b

)
estds, t ≥ 0.

(8)
However, the method of the integrating factor leads to
definite real integral

y(t) = y0e
−bt +

∫ t

0

e−b(t−t1)dt1, t ≥ 0. (9)

4This example is taken from [7], p. 71, with a0 = 1 and
b0 ≡ b.

Let us show the equivalence of the two results.
Proof. According to (8), we have

y(t) = y0

∮
(c)

est

s + b
ds+

∫
(c)

est
∮∞
0

f(t1)e−st1dt1

s + b
ds,

= y0L[e−bt] + L[f(t1)e−b(t−t1)dt1].

Then the solution expression (9) in the form of a
definite integral follows from the solution expression
(8) of a contour integral. �

C Tinbergen’s shipbuilding cycle

The Tinbergen’s equation [39] is of the form 5

y′(t) = −by(t− 1), b > 0, t > θ. (10)

We also assume y(t) = h(t), t ∈ [0, θ), where h(t)
is some given function. In this application to the ship-
building industry, y denotes the deviation of the ton-
nage from a mean value and θ a given constant con-
struction time. In this equation, Tinbergen assumes
the rate of new shipbuilding to be proportional to a
delayed tonnage deviation, with a one to two years
delay θ and a ranged intensity reaction b ∈ [12 , 1]. An
endogenous cycle is found for the shipbuilding indus-
try, with a period of about 8 years: 7 years 6 months
for θ = 1 and 8 years 9 months for θ = 2.

C.1 Characteristic equation

Let the form of the unknown function be y(t) = eρt,
the characteristic equation from (10) is

D(ρ) ≡ ρ + be−ρθ = 0, ρ ∈ C, (11)

where ρ = β +αj, j =
√
−1. Inserting (11) into (10)

and separating the real and imaginary parts, we obtain
the system

cos u =
−v

θb
ev,

sin u

u
=

1
θb

ev,

where u ≡ αθ and v ≡ βθ. Eliminating v, we obtain
an even function f(u) in which the structural coeffi-
cients θ, b are not explicit. We have

f(u) =
u

tan u
+ ln

sin u

u
= C, (12)

5A nonlinear DDE version is given by [33]

y′(t) = −by(t− 1)− εy3(t− 1), ε, b > 0

.



where C ≡ − ln(θb). A further analysis of the char-
acteristic equation is given by Pinney [33] by means
of the (x,k)-root plateau in the parameter space6. The
properties of the caracteristic equation are summa-
rized in Figure 1.

Figure 1: Exponential behavior

C.2 Existence of exponential components

Let z ≡ ρθ, (11) may be expressed as

− z

θb
= e−z. (13)

The two parts of (11) are plotted 7 in Figure 2. The
condition for tangency of the two curves 1/(θb) =
e−z is z = ln(θb). Inserting in (13), we get C = 1.
The solution of the DDE (10) is a pure exponential 8

of the type

y(t) = (C1 + C2t)e
z
θ
t.

For C > 1, the solutions are composed of two expo-
nentials in the period ranges

T ∈
(

θ

k
,

θ

k − 1
2

)
, k ∈ N.

C.3 Existence of cyclical components

A cycle corresponds to each real solution of (12) when
C < 1. The two sides of this equation are represented
in Figure 3. Real branches of f(u) decrease monot-
ically in all the intervals [k2π, (2k + 1)π], k ∈ N0.

6According to this concept, the parameters may be chosen
in order to achieve some desired properties for the system. Let
ρ = x + jy,the (x,k)-root plateau represents the sets of parame-
ter values for which the caracteristic equation has k pseudo roots
greater than x. The equations of the (x, k)-root plateau on the
b-line are

Re(D(ρ)) = x + be−x cos y,

Im(D(ρ)) = y − be−x sin y.

7The figure shows a state of a dynamic interactive Mathemat-
ica plotting with automatic sliders and controls.

8A degenerate cycle with infinite period.

Figure 2: Exponential behavior

According to u = αθ and α = 2π
T , the corresponding

period ranges are

T ∈
(

θ

k
,

θ

k − 1
2

)
, k ∈ N0.

The sine curves may be damped or undamped. A dict-
inction is made between the major cycle of the first
period and the minor cycles

Figure 3: Cyclical behavior

C.4 Stability of the components

The stability regions are shown in tne (b, θ)- param-
eter plane (Figure 4) The corresponding patterns of
components are shown in Figure 5.



Figure 4: Stability diagram

Figure 5: Pattern of the components
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[29] D. Léonard and N. Van Long. Optimal Control
Theory and Static Optimization in Economics.
Cambridge University Press, Cambridge–New
York–Port Chester–Melbourne–Sydney, 1992.

[30] C.S. Lindquist. Adaptative & Digital Signal
Processing with Digital Filtering Applications,
volume 2 of International Series in Signal Pro-
cessing and Filtering. Steward & Sons, Miami,
1989.

[31] M.D. Lutovac and D.V. Tos̆ić. SchematicSolver
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