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Abstract In the real game situations, the possible values of parameters are
imprecisely known to the experts, all data of the game are not exactly known
to the players, and information is often lacking. Imprecision on the environ-
ment, preferences, payoffs and moves of other players, may be of different
types, but not only the probabilistic type of the Bayesian games. In the
probabilistic approaches of uncertainty, events or statements are assumed to
be well defined. On the contrary, the Zadeh’s fuzziness concept extends the
imprecision or vagueness appreciations to that events and statements. The
theory of fuzzy sets has been extensively applied to a variety of domains
in soft computing, modeling and decision making. This contribution intro-
duces these attractive techniques with numerical applications to economic
single-objective bi-matrix games. The computations are carried out using
the software MATHEMATICA�7.0.1.

Keywords: fuzzy logic game; fuzzy linear/quadratic programming problem;
extension principle; function principle.

1. Introduction

1.1. Fuzzy approach
In the real game situations, the possible values of parameters are imprecisely known
to the experts and all data of the game are not exactly known to the players.
Imprecision on the environment, preferences, payoffs and moves of other players,
may be of different types, but not only the probabilistic type of the Bayesian games.
The fuzzy sense of imprecision, introduces a degree of membership for each element
of a given set. In the classical crisp collection of elements X , each element x can
belong to or not to the set. For a fuzzy set Ã, the characteristic function allows
various degrees of membership µÃ(x) for x ∈ X , where X denotes the universe
space. Therefore, the fuzzy set Ã in X is a set of ordered pairs {(x, µÃ(x)

)|x ∈ X}.
This introduction presents elements on the fuzzy games theory, applications of fuzzy
games to economic and management problems, and recalls the equivalence we have
between games and technical programming problems.

1.2. Fuzzy games history
Research on fuzzy games have been developed rapidly since the mid 1970s (Zadeh
et al., 1974- Negoitǎ and Ralescu, 1975- Butnariu, 1978- Aubin, 1979). The study
by (Nishizaki and Sakawa, 2000a) formulates a linear programming (LP) problem
with fuzzy (triangular) parameters and a fuzzy goal of each coalition of players.
In the fuzzy programming problem, the decision maker (DM) may know the cost
coefficients in the objective function, whereas the payoffs in the constraints would
stay imprecise (Campos, 1989). Fuzzy logic games (FLG) are a component of a
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larger class of combinatorial games and also belong to the so-called ”soft comput-
ing” which combines fuzzy logic, neural networks and evolutionary programming
(Aubin, 1979, 1981). In FLGs, the decision making is re-formulated in an uncertain
(fuzzy) environment : the decision makers are confronted with fuzzy constraints,
fuzzy utility maximization and also fuzziness about the moves of the competitors
(Campos, 1989- Vodyottema et al., 2004, de Wilde, 2004). Moreover, cooperative
FLGs are describing coalitions, where the n players associate a certain rate to their
participation (Mareš, 2001). Such games are defined on fuzzy subsets of the whole
set of n players (Aubin, 1979, 1981- Garagic and Cruz, 2003- Azrieli and Lehrer,
2007- Hwang, 2007). The axiomatic analysis by (Billot, 1992) reformulates the basic
microeconomic theory to deal with fuzzy choice and preferences. The fuzzy prefer-
ence operator � is defined by �: X2 �→ [0, 1], X denoting the set of alternatives.
Hence x � y will be interpreted as the degree to which x is at least as good as y. The
resolution method consists in introducing tolerance levels which allow the violation
of each constraint (Delgado et al., 1989). The concepts of equilibrium may be based
on Zimmermann’s approach, in two steps for solving LP multi-objective problems
with fuzzy goals (Bellman and Zadeh, 1970- Chanas, 1978- Lai and Hwang, 1992-
Kim and Lee, 2001- Bector and Chandra, 2005- Kacher and Larbani, 2008). In the
reality, the decision makers with conflicting interests, are faced to multiple attributes
such as costs, time and productivity. For such problems, methods and applications
have been developed in (Zimmermann, 1978- Nishizaki and Sakawa, 2000a, 2001 -
Sakawa, 2000). These models are based on the maximin and the minimax principles
of the matrix game theory. The equilibrium solutions correspond to players trying
to maximize a degree of attainment of the fuzzy goals. The aggregation of all the
fuzzy sets in the multi-objective models use the fuzzy decision rule by Bellman and
Zadeh (Lai and Hwang, 1994- Chen, 2002- Keller, 2009a,b).

1.3. Fuzzy games to economics and management

Fuzzy games have been applied to a wide range of subjects in economics and man-
agement modeling, such as: linear production models, inventory models, oligopolistic
competition markets, and management of technology (MOT).

Linear production model. The pioneered production model by (Owen, 1975) is
describing a cooperative game in which the players pool resources to produce fin-
ished goods. The goods are next sold at the market price. In the resulting LP pro-
duction model, the total revenue is maximized subject to the resource constraints.
The Owen’s production model has been extended to fuzzy situations, notably by
(Nishizaki and Sakawa, 2000b,c- Chen et al., 2007). The parameters involved in the
objective and in the constraints of the LP problem are fuzzy numbers which reflect
the imprecise knowledge of experts. The DMs maximize the total revenue from sell-
ing, subject to the resource constraints, and in absence of demand limitation. A
parametric programming approach is used to solving the linear production model.
Nishisaki and Sakawa (Nishizaki and Sakawa, 2000b) also prove the existence and
non-emptiness of the α-core of the fuzzy game. In (Nishizaki and Sakawa, 2000c),
two solution concepts based on fuzzy goals are defined: one is defined by maximizing
the minimal fuzzy goal and the other by maximizing the sum of fuzzy goals. Molina
and Tejada (Molina and Tejada, 2006) analyze a linear production with committee
control to allow players to graduate their cooperation willingness. The resources are
controlled by committees of players in a fuzzy context.



194 André A. Keller

Production inventory model. The studies by (Park, 1987- Lee and Yao, 1996-
Yao and Lee, 1998- Lin and Yao, 2000) aim the optimality of the stock quantity of
the inventory with back orders. The economic orders quantities are fuzzy numbers
(FNs). As a result, the total cost is found to be higher than in the crisp model.
In (Chen et al., 1996), the fuzzy context is extended to demand, order costs and
back order costs. The computation of B̃ = f(Ã1, Ã2, . . . , Ãn) with trapezoidal FNs
Ã1, Ã2, . . . , Ãn uses the Chen’s function principle (instead of the Zadeh’s exten-
sion principle). In their study, Chen et al. (Chen et al., 1996) propose a production
inventory model with imperfect products to the electronic industry. The fuzzy arith-
metic operations with trapezoidal FNs also use the function principle.

Oligopolistic market model. In their study, (Greenhut et al., 1995) propose a
fuzzy approach to the oligopolistic market. According to this approach, the mem-
bership function expresses the degree to which a firm belongs to the oligopolistic
market.

Management of technology. The Management of Technology (MOT) is con-
cerned with the identification and selection of technologies, innovation management,
transfer and licensing, R & D. In the MOT, the problem of determining optimal
strategies is transformed to a problem of fitting Nash equilibria of a bi-matrix game.
The study by (Chen and Larbani, 2006) approaches the product development of
nano materials in a matrix game model for fuzzy multiple attributes decision mak-
ing problems.

1.4. Equivalence theorems

Two Players I and II have mixed strategies given by the m-dimensional vector x and
the n-dimensional vector y, respectively. The payoffs of Players I and II are the m×n
matrices A and B, respectively. Let em be an m-dimensional vector of ones, en hav-
ing a dimension n. The objective of Player I will be: {maxx x’Ay subject to e’mx =
1, x ≥ 0}. The objective of Player II will then be: {maxy x’By subject to e′ny =
1, y ≥ 0}. Following (Mangasarian and Stone, 1964), a bi-matrix game is shown to
be equivalent to a quadratic programming (QP) problem and a zero-sum game to
a LP problem.

Equivalence to QP problems

Definition 1. (Nash equilibrium). A Nash equilibrium point is a pair of strategies
(x∗,y∗) such that the objectives of the two players are full filled simultaneously. We
have

x∗′
Ay∗ = max

x
{x’Ay∗|em.x = 1,x ≥ 0}

x∗′
By∗ = max

y
{x∗′

By|en.y = 1,y ≥ 0}

Applying the Kuhn-Tucker (K-T) necessary and sufficient conditions, we set the
Equivalence Theorem (Mangasarian and Stone, 1964- Lemke and Howson, 1964-
van der Panne, 1966- Shimizu and Aiyoshi, 1980):

Theorem 1. (Equivalence Theorem). A necessary and sufficient condition that
(x∗,y∗) be an equilibrium point is to correspond to the solution of the QP prob-
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lem
max

x,y,α,β
x’(A + B)y− α− β

subject to

B’x ≤ βen,

Ay ≤ αem,

e’mx = 1,
e’ny = 1,

x ≥ 0, y ≥ 0,

where α, β ∈ R are the negative of the multipliers associated with the constraints.

Proof: see (Mangasarian and Stone, 1964), pages 350-351.�

Equivalence to LP problems In zero-sum games we have B = −A with γ = −β.
The QP problem degenerates to two dual problems (see Fig.1).

Figure1. LP dual problems

A numerical example is shown in Fig.1. In this example, the payoff matrices are

A =
(

2 −1
−1 1

)
, B =

(
1 −1
−1 2

)
,

and the strategies are x = (x1, x2) and y = (y1, y2). The application of the Equiv-
alence Theorem 1 gives the optimal strategies x∗ = (.6, .4) and y∗ = (.6, .2).

2. Fuzzy data environment and fuzzy games

Besides of the usual ”True” and ”False” binary statements, there are also vague (or
fuzzy) statements in the real world of the decision making. The linguistic statements
may be : ”possible”, ”almost sure”, ”hardly fulfilled”,”approximately equal to”,
”considerable larger to”, etc.

1 Algorithms for solving two-person games are presented in (Canty, 2003-
Engwerda, 2005).
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Figure2. Solving games with MATHEMATICA

2.1. Fuzzy number representations

Definition 2. (Membership function of a fuzzy number). Any vague statement S̃
is considered as a fuzzy subset of a universe space X with the membership function
µS̃ : X �→ [0, 1] . For any x ∈ X : µS̃(x) = 1 means S̃ is ”True” for x; µS̃(x) = 0
means S̃ is ”False” for x, and 0 < µS̃(x) < 1 means S̃ is ”possible” for x with the
degree of possibility µS̃(x). This function is called the membership function (MF)
of the fuzzy number (FN).

Let the MF of the fuzzy Ã be piecewise continuous triangular shaped. The fuzzy Ã is
said convex normalized. The support of Ã is such that supp Ã = {x ∈ X |µÃ(x) = 0}.
The height of Ã is such that hgt Ã = supx µÃ(x). The crossover points are defined
by c = {x|µÃ(x) = 1

2}. The α-cuts of Ã gives the crisp set of elements with at least
the degree α, such that αA = {x ∈ X |µÃ(x) ≥ α} (see Fig.3).

LR-representation

Definition 3. (LR-type fuzzy number). A fuzzy ÃLR =
(
ā, δ−a , δ

+
a

)
is LR-type

if there exist reference functions L (for left) and R (for right), and positive scalars
δ−a , δ

+
a such that

µÃ(x) =

{
L( ā−x

δ−a
), x ≤ ā

R(x−ā
δ+a

), x ≥ ā,

where ā denotes the ”mean value” and δ−a , δ
+
a the left and right spreads. For the

example in Fig.4, we have the reference functions

L(x) =
1

1 + x2
and R(x) =

1
1 + 2|x| .

The LR-representation (Dubois and Prade, 1980) increases notably the computa-
tional efficiency.
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Figure3. Fuzzy number elements

Figure4. LR-representation of a FN
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Membership shapes. The MFs may take one of the basic forms in Fig.5. The Figure
A is an increasing ramp MF type. The Figure B is a sigmoidal MF for which a
parameter controls the slope at the crossover point (c, µ(c)). The Figure C represents
a bell-shaped fuzzy set, centered at c with crossover points c − w and c + w, and
with slope s/2w at the crossover points. The trapezoidal and the triangular forms
(Figures D and E) are often used, because of their simplicity.

Figure5. Basic shapes for membership functions

2.2. Arithmetic operations on fuzzy numbers

The extension principle is a method of calculating the MF of the output from the
MFs of the input fuzzy quantities. More precisely, let the symbol ∗ : R×R �→ R with
∗ ∈ {+,−, ., /}, a binary operation over real numbers. Then, it can be extended to
the operation � over the set F(R) of fuzzy quantities (see Appendix B).

Extension Principle 2

2 On the contrary to the convolution form of the extension principle, Chen’s rule is a useful
pointwise multiplication for trapezoidal MFs. Let F be a mapping from n-dimension
FNs belonging to the trapezoidal family Ãi = (ai, bi, ci, di; wi) where wi = maxx µÃi

(x)

i ∈ Nn. The fuzzy B̃ in R is B̃ = F (Ã1, Ã2, . . . , Ãn) = (r, s, t, u : w). The determination
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Theorem 2. (Extension principle). Denote for ã, b̃ ∈ F(R) the quantity c̃ = ã� b̃,
then the MF µc is derived from the continuous MFs µa and µb by the expression

µã�b̃(z) = sup
z=x∗y

min{µã(x), µb̃(y)}.

This formula tells that the possibility that the fuzzy quantity c̃ = ã � b̃ achieves
z ∈ R is as great as the most possible of the real x, y such that z = x ∗ y, where
the a, b take the values x, y respectively. For the addition, we have the ordinary
convolution

µã
⊕
b̃(z) =

∫ z

0

µã(x)µb̃(z − x)dx.

Example. Let the MFs of the fuzzy ã and b̃ be defined in Fig.6. The α-cuts are αã =

Figure6. Fuzzy numbers ã and b̃

[α+1, 3−α] and αb̃ = [α+4, 7−2α]. Then, we have αc̃ = α(ã
⊕

b̃) = αã+ αb̃ =
[2α+ 5, 10− 3α]. Solving in α, we obtain

µã
⊕
b̃(x) =

⎧⎪⎨⎪⎩
(x− 5)/2, x ∈ [5, 7],
(10− x)/3, x ∈ [7, 10],
0, otherwise.

Theorem 3. (Addition of LR-type fuzzy numbers). Let ã and b̃ two FNs of LR-type
ã = (ā, δ−a , δ

+
a )LR and b̃ = (b̄, δ−b , δ

+
b )LR, then ã

⊕
b̃ = (ā+ b̄, δ−a + δ−b , δ

+
a + δ+b )LR.

For ã = (2, 1, 1)LR and b̃ = (5, 1, 2)LR, we simply have ã
⊕

b̃ = (7, 2, 3)LR. The
extended addition is illustrated in Fig.7.

2.3. Standard fuzzy games

Standard fuzzy games are LP problems with fuzzy constraints.To solve the LP prob-
lem, the fuzzy constraints must be converted into crisp inequalities by using some
ranking functions. One auxiliary problem is then to be solved. We will consider three
situations for the game. In the first case, the resources of the production problem
are imprecise (fuzzy) to the DM. In the second case, the technical coefficients are
nonsymmetric triangular FNs. In the third case, the fuzzy model is extended to soft
constraints, when the DM allows some violation in the accomplishment of the con-
straints. A numerical example illustrates a general situation, where the resources,
the technical coefficients and the inequalities are all imprecise.

of the trapezoidal parameters r, s, t, u and w is given in Appendix A, for Ã ∗ B̃ with
∗ ∈ {+,−, ., /}.



200 André A. Keller

Figure7. Extended addition of fuzzy sets

Case 1: LP problem with fuzzy resources . Let the maximizing LP problem
with fuzzy (imprecise) resources b̃ be

maxx c�.x, (c,x ∈ Rn)
subject to

Ai.x ≤ b̃i (i ∈ Nm),
x ≥ 0.

In a production scheduling problem, the vector c denotes n costs, the m × n
matrix A technical coefficients, the vector b m resources and the vector x the n
variables. The solution algorithm of the Zimmermann’s symmetric method consists
in the following steps:

Step 1 : Definition of the memberships and determination of the fuzzy feasible set
. Let the ith resource bi being defined by the interval [bi, bi + pi] with tolerance
pi.The memberships of the fuzzy b̃i’s are of the piecewise linear type (x ∈ R). We
have

µi(x) =

⎧⎪⎨⎪⎩
1, x ≥ bi

1− x−bi
pi

, bi < x < bi + pi

0, x ≥ bi + pi

The degree Di(x) to which x satisfies the ith constraint is then µi(Ai.x). All the
µi’s define fuzzy sets on Rn and the MF of fuzzy feasible set is

m∧
i=1

µi(Ai.x).

Step 2 : Definition of the fuzzy optimal values . The objective admits a lower and
an upper bound respectively equal to

max
{
zl = c’.x | Ai.x ≤ bi (i ∈ Nm), x ≥ 0

}
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and

max
{
zu = c’.x | Ai.x ≤ bi + pi (i ∈ Nm), x ≥ 0

}
.

The MF of the single objective G is defined (x ∈ R) by

µG(x) =

⎧⎪⎨⎪⎩
1, ≥ bi
c’.x−zl
zu−zl , zl < c’.x < zl

0, otherwise

Step 3: Solution by using the max-min operator . The problem

max
(

(
m⋂
i=1

Di)
⋂

G

)
(x)

is described by the equivalent crisp LP problem

maxx,λ λ

subject to

µG(x) =
c’.x− zl
zu − zl

≥ λ ,

µi(x) = 1− Ai.x− bi
pi

≥ λ, (i ∈ Nm),

x, λ ≥ 0.

Case 2: LP problem with fuzzy technical coefficients . Suppose that all the
coefficients of the constraints are nonsymmetric triangular FNs (TFNs)

ãij = (aij , aij − aij , aij + āij), and b̃i = (bi, bi − bij , bi + b̄i).

According to the operations on the TFNs (using a simple partial order such that
ũ ≤ ṽ ⇔ max{ũ, ṽ} = ṽ), we have to solve the following crisp LP

maxx c.x
subject to

Ai.x ≤ bi (i ∈ Nm)
Ai.x−Ai ≤ bi − bi (i ∈ Nm)
Ai.x+ Āi ≤ bi + b̄i (i ∈ Nm)

x, λ ≥ 0.

Case 3: LP problem with soft constraints . Let a maximizing problem with
triangular coefficients (excluding the objective function) and soft constraint. We
have

maxx c’.x, (c,x ∈ Rn)
subject to

Ãi.x � b̃i (i ∈ Nm),
x ≥ 0.
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The entries ãij , b̃i are FNs of F(R) whose values are known with imprecision. The
fuzzy inequality � tells that the DM will allow some violation in the accomplishment
of the constraint. The MFs µi : F(R) �→ [0, 1], i ∈ Nm measure the adequacy
between both sides of the constraint Ãi.x and b̃i. The fuzzy t̃i express the margins
of tolerance for each constraint. Let 	 be a ranking relation (<) between FNs, The
auxiliary parametric LP problem is

maxx c’.x, (c,x ∈ Rn)
subject to

Ãi.x (<) b̃i + t̃i(1 − α) (i ∈ Nm),
x ≥ 0, α ∈ (0, 1]

The DM may choose different rules such as : x̃ (<)1 ỹ ⇔ x ≤ y
or x̃ (<)2 ỹ ⇔ x̄ ≤ y. A different solution will be obtained for each rule.

Conversion of the fuzzy constraints into crisp inequalities. The FLP problem may
be written

maxx c’.x (c,x ∈ Rn)
subject to

Ãi.x ≤� b̃i + t̃i(1− α), (i ∈ Nm)
x ≥ 0.

In the constraint, the inequality rule ≤� is to be chosen by the DM among several
ranking functions (or index) matching each FN into the real line. The DM may
choose the rule 1: x̃(<)1ỹ ⇔ x ≤ y or the rule 2: x̃(<)2ỹ ⇔ x̄ ≤ y. Different
solutions will be obtained.

Solving an auxiliary problem. Let a TFN be expressed by ã = (a, a−, a+), where
a−, a+ are the lower and the upper limit of the support, respectively. Ranking the
two fuzzy sides of the inequality may give the following auxiliary parametric LP
problem

maxx c’.x (c,x ∈ Rn)
subject to

(Ai +A−
i +A+

i ).x ≤ (bi + b−i + b+i ) + (ti + t−i + t+i )(1− α), (i ∈ Nm)
x ≥ 0.

2.4. Numerical example
This numerical example is due to (Delgado et al., 1990). The FLP problem is

maxx1,x2 z = 5x1 + 6x2

subject to

3̃x1 + 4̃x2 � 1̃8,

2̃x1 + 1̃x2 � 7̃,
x1, x2 ≥ 0.

The FNs take the form of tensors in Fig.8. A same FN as 3̃ may thus have different
definitions, in a given problem.
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Figure8. Fuzzy parameters and tolerances

According to the ranking rule that the DM will choose, two different auxiliary
problems and solutions are obtained. We have
rule 1 : x̃ <�1 ỹ ⇔ x ≤ y.

maxx1,x2 z = 5x1 + 6x2

subject to
3x1 + 4x2 ≤ 18 + 3(1− α),

2x1 + x2 ≤ 7 + (1− α),
x1, x2 ≥ 0, α ∈ (0, 1]

The parameterized solution with rule 1 given by MATHEMATICA is shown in
Fig.9. The expression of the objective is 1

5 (163− 23α), and that of the variables are
x1 = 1

5 (11− α) and x2 = 3
5 (6 − α). rule 2 : x̃ <�2 ỹ ⇔ x̄ ≤ y.

Figure9. Parameterized solution with rule 1

maxx1,x2 z = 5x1 + 6x2

subject to
4x1 + 5.5x2 ≤ 16 + 2.5(1− α),

3x1 + 2x2 ≤ 6 + .5(1− α),
x1, x2 ≥ 0, α ∈ (0, 1]

The parameterized solution with rule 2 given by MATHEMATICA is shown Fig.10.
The solutions are also expressions defined on intervals. The optimal objective is
piecewise with 3

2 (13 − α) for α ∈ (0, 5
9 ] and 1

34 (683 − 87α) for α ∈ (5
9 , 1]. The

solutions for x1 and x2 are shown in Fig.11.



204 André A. Keller

Figure10. Parameterized solution with rule 2

Figure11. Optimal strategies x∗
1 and x∗

2 with rule 2

3. Single objective fuzzy matrix games

3.1. Problem formulation and equilibrium solution

The problem formulation and the equilibrium solutions of bi-matrix games are com-
pared for both crisp and fuzzy versions.

Problem formulation

1) Crisp bi-matrix game formulation. A two-person bi-matrix game is represented
by G = (Sm, Sn,A,B), where Sm, Sn are the strategy spaces of the Players I
and II, respectively. The two Players I and II have mixed strategies which are the
m-dimensional vector x and the n-dimensional vector y, respectively. The strategy
spaces are defined by the convex polytopes

Sm = {x ∈ Rm+ , x′em = 1}

and
Sn = {y ∈ Rn+, y′en = 1}.

The payoffs of Players I and II are m × n matrices A and B with real entries,
respectively. The payoff domains of Players I and II are the sets D1 = {x’Ay| x ∈
Sm} ⊆ R and D2 = {x’By| y ∈ Sn} ⊆ R.
The programming problems of the Players I and II are

{max
x

x’Ay subject to e’mx = 1, x ≥ 0}
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and
{max

y
x’By subject to e′ny = 1, y ≥ 0},

respectively.

2) Fuzzy bi-matrix game formulation. A (not completely) fuzzified two-person bi-
matrix game with fuzzy goals and fuzzy payoffs, is represented by

G = (Sm, Sn, Ã, B̃, ṽ, p̃, p̃′, w̃, q̃, q̃′,�,
),

where Ã, B̃ are the payoffs m × n matrices with fuzzy entries, ṽ, w̃ the aspiration
levels of Players I and II, p̃, p̃′ the fuzzy tolerance levels for Player I, q̃, q̃′ the fuzzy
tolerance levels for Player II and �,
 the fuzzy inequalities. A fuzzy goal for Player
I is a fuzzy set G̃1 which MF is µ1 : D1 �→ [0, 1]. The fuzzy goal of Player II is
similarly defined. The fuzzy payoff matrix Ã may have one LR-representation for
the entries such as ãij = (aij , δ−aij , δ

+
aij )LR, where aij denotes the mean value, δ−aij

and δ+aij the left and right spreads.

Equilibrium solution

1) Crisp bi-matrix game solution. The value of the game is obtained at the point
(x

′∗Ay∗,x
′∗By∗). According to the Equivalence Theorem, the conditions for the

pair (x∗,y∗) to be an equilibrium point is the solution of the QP problem

max
x,y,p,q

x’(A + B)y− p− q

subject to
B′x ≤ qen,

Ay ≤ pem,
x′em = 1,
y′en = 1,

x ≥ 0, y ≥ 0,

where p, q ∈ R are the negative of the multipliers associated with the constraints.

2) Fuzzy bi-matrix game solution

Definition 4. (Bellman-Zadeh decision principle). Based on the principle of deci-
sion by Bellman-Zadeh, the fuzzy decision is expressed as the intersection of the
fuzzy goals and expected payoffs, such as for Player I,

µa(x,y) = min
{
µxÃy(p), µG̃1

(p)
}
.

The fuzzy decision for Player II, is similarly defined.

Definition 5. (Degree of attainment of the fuzzy goal). A degree of attainment of
the fuzzy goal is defined as the maximum of the MF µa(x,y). We have

d1(x,y) = max
p

(
min

{
µxÃy(p), µG̃1

(p)
})

.
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The degree of attainment of the fuzzy goal for Player II d2(x,y) is similarly de-
fined. According to the Nishizaki and Sakawa’s model, each player is supposed to
maximize the degree of attainment of his goal. An equilibrium solution is then
defined w.r.t. the degree of attainment of the fuzzy goals by the two players. Let
G = (Sm, Sn, Ã, B̃) be a fuzzy bi-matrix game, the Nash equilibrium solution w.r.t.
the degree of attainment of the fuzzy goal is a pair of strategies (x∗,y∗) if, for all
other strategies, we have

d1(x∗,y∗) ≥ d1(x,y∗) for all x ∈ Sm,
d2(x∗,y∗) ≥ d2(x∗,y) for all y ∈ Sn.

The programming problem of the Player I is

max
x

d1(x,y∗) =
x′(A +∆A)y∗ − a

ā− a+ x′∆Ay∗

subject to
x′em = 1,

x ≥ 0.

The programming problem of the Player II is similarly defined. Applying the K-T
conditions, we have the equivalence Theorem.

3.2. Bi-matrix games with fuzzy payoffs
The problems of Player I and Player II are solved according to identical steps. The
initial problem is transformed into an another problem, by changing the variables.
A ranking function is then introduced. Finally, the resulting auxiliary problem is
solved. A numerical example illustrates the procedure.

Problem of the Player I. The fuzzy matrix game problem of the maximizing
Player I in a fuzzy environment is

max v

subject to
m∑
i=1

ãijxi 
 v, (j ∈ Nn)

m∑
i=1

xi = 1, xi ≥ 0 (i ∈ Nm).

The Player I’s payoffs ãij are fuzzy. The fuzzy inequality � tells that the DM will
allow some violation in the accomplishment of the constraint.

1) Variable changing. The variables are changed into ui = xi/v (i ∈ Nm). We have∑m
i=1

ui = 1/v, then v = 1/
∑m
i=1

ui. The initial problem is transformed into

min
m∑
i=1

ui

subject to
m∑
i=1

ãijui 
 1, (j ∈ Nn)

ui ≥ 0 (i ∈ Nm).
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2) Introduction of a ranking function. For solving the FLP problem in canonical
form, a ranking function is introduced to compare both fuzzy sides of the inequality.
The Player I’s problem is transformed into the parametric LP problem

min
m∑
i=1

ui

subject to
m∑
i=1

ãijui ≥� 1− p̃j(1− α), (j ∈ Nn)

ui ≥ 0 (i ∈ Nm), α ∈ (0, 1].

The fuzzy p̃i’s are the maximum violation that the Player I will allow for the con-
straints.

3) Solution of the auxiliary problem. Let the Player I’s payoffs ãij be TFNs ex-
pressed by ãij = (aij , a−ij , a

+
ij), where a−ij , a

+
ij are the lower and the upper limit

of the support, respectively. Ranking the two sides of the inequalities leads to the
following auxiliary parametric LP problem

min
m∑
i=1

ui

subject to
m∑
i=1

(aij + a−ij + a+
ij)ui ≥ 3 + (pi + p−i + p+

i )(1 − α), (j ∈ Nn)

ui ≥ 0 (i ∈ Nm), α ∈ (0, 1].

4) Numerical example. This numerical example is due to (Campos,1989). The fuzzy
payoff matrix of Player I is

Ã =
(

1̃80 1̃56
9̃0 1̃80

)
The TFNs are defined by 1̃80 = (180, 175, 190), 1̃56 = (156, 150, 158), 9̃0 =

(90, 80, 100). The fuzzy margins are p̃1 = p̃2 = (0.10, 0.08, 0.11) for the Player I.
The FLP problem is

min u1 + u2

subject to

1̃80u1 + 9̃0u2 ≥� 1− 0̃.10(1− α)

9̃0u1 + 1̃80u2 ≥� 1− 0̃.10(1− α)
u1, u2 ≥ 0, α ∈ (0, 1].

The auxiliary problem is

min u1 + u2

subject to
545u1 + 270u2 ≥ 3− 0.29(1− α)
464u1 + 545u2 ≥ 3− 0.29(1− α)

u1, u2 ≥ 0, α ∈ (0, 1].



208 André A. Keller

Solving the auxiliary problem and changing the variables, the optimal Player I’s
strategies are x∗ = (0.77, 0.23) and v(α) = 482.43

3−0.29(1−α) , α ∈ (0, 1].

Problem of the Player II. The fuzzy matrix game problem of the minimizing
Player II in a fuzzy environment is

min w

subject to
n∑
j=1

ãijyj 
 w, (i ∈ Nm)

n∑
j=1

yj = 1, yj ≥ 0 (j ∈ Nn).

The losses of Player II ãij are fuzzy numbers of F(R) whose values are known with
imprecision.

1) Variable changing. Let change the variables into sj = yj/w (j ∈ Nn). We have∑n
j=1 sj = 1/w, the w = 1/

∑n
j=1 sj . The initial problem is transformed into

max
n∑
j=1

si

subject to
n∑
j=1

ãijsj � 1, (i ∈ Nm)

sj ≥ 0 (j ∈ Nn).

The RHS of the fuzzy inequality is transformed to a crisp number.

2) Introduction of a ranking function. For solving the FLP problem in canonical
form, we apply the following procedure : a ranking function is introduced to com-
pare both fuzzy sides of the inequality, and solving a parametric LP problem. The
problem of the player II is transformed into

max
m∑
j=1

si

subject to
n∑
j=1

ãijsj ≤� 1 + q̃i(1− α), (i ∈ Nm)

sj ≥ 0 (j ∈ Nn), α ∈ (0, 1].

The fuzzy q̃j ’s are the maximum violation that the Player II will allow for the
constraints.

3) Solution of the auxiliary problem . Let the Player II’s losses ãij be TFNs be
expressed by ãij = (aij , a−ij , a

+
ij). Ranking the two fuzzy sides of the inequality
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produces the following auxiliary parametric LP problem

max
n∑
j=1

si

subject to
n∑
j=1

(aij + a−ij + a+
ij)sj ≤ 3 + (qi + q−i + q+i )(1− α), (i ∈ Nm)

sj ≥ 0 (j ∈ Nn), α ∈ (0, 1].

4) Numerical example. The fuzzy losses matrix of Player II is

Ã =
(

1̃80 1̃56
9̃0 1̃80

)
.

The TFNs are defined by 1̃80 = (180, 175, 190), 1̃56 = (156, 150, 158), 9̃0 =
(90, 80, 100). The fuzzy margins are q̃1 = q̃2 = (0.15, 0.14, 0.17) for the Player II.

The FLP problem is

max s1 + s2

subject to

1̃80s1 + 1̃56s2 ≤� 1− 0̃.15(1− α)

9̃0s1 + 1̃80s2 ≤� 1− 0̃.15(1− α)
s1, s2 ≥ 0, α ∈ (0, 1].

The auxiliary problem is

max s1 + s2

subject to
545s1 + 464s2 ≤ 3 + 0.46(1− α)
270s1 + 545s2 ≤ 3 + 0.46(1− α)

s1, s2 ≥ 0, α ∈ (0, 1].

Solving the auxiliary problem and changing the variables, the optimal Player’s II
strategies are y∗ = (0.23, 0.77) and w(α) = 482.43

3+0.49(1−α) , α ∈ (0, 1].

3.3. Bi-matrix games with Fuzzy goal

The first task of each player is to determine a linear MF µ(x, y) for each pair of
strategies (x, y). We assume that the degree of satisfaction of each player depends
on the expected payoff xAy. For Player I, the maximin solution w.r.t. a degree of
achievement of the fuzzy goal is an optimal solution. Similarly for Player II, the
minimax solution w.r.t. a degree of achievement of the fuzzy goal is an optimal
solution. Let the single-objective matrix game G = (Sm, Sn,A) with fuzzy goals
where Sm and Sn denote the compact convex strategy spaces of Players, such that
Sm = {x ∈ Rm+ , e′x = 1} and Sn = {y ∈ Rn+, e′y = 1}, and where A ∈ Rm×n is
the payoff matrix of the game with real entries.



210 André A. Keller

Maximin problem of the Player I. For any pair of strategies (x, y) the MF
µ(x, y) depends on the expected payoff xAy. Assume that the degree of satisfaction
increases linearly, we have

µ(xAy) =

⎧⎪⎨⎪⎩
1, xAy ≥ ā
xAy−a
ā−a , a ≤ xAy ≤ ā

0, xAy ≤ a,

where ā and a are the best and the worst degree of satisfaction to the Player I,
respectively. These extremal values are determined by

ā = max
x

max
y

xAy = max
i∈Nm

max
j∈Nn

aij

a = min
x

min
y

xAy = min
i∈Nm

min
j∈Nn

aij

The MF of the fuzzy goal is shown in Fig.12.

Figure12. Fuzzy goal membership function of Player I

The maximin solution of Player I is given by the following Theorem.

Theorem 4. (Maximin solution). For a single-objective two-person matrix game
with a linearly fuzzy goal function, the Player I’s maximin solution w.r.t. a degree
of achievement of the fuzzy goal is equal to an optimal solution to the LP problem

max λ

subject to

1
ā− a

( m∑
i=1

aijxi − a

)
≥ λ, (j ∈ Nn)

e′x = 1, (e, x ∈ Rm),
x ≥ 0.

Proof: see (Nishizaki and Sakawa, 2001), page 39. �

In the Cook’s example (Cook, 1976), a 3× 3 payoff matrix is given by

A =

⎛⎝ 2 5 1
−1 −2 6
0 3 −1

⎞⎠
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We have ā = 6 and a = −2. Then, we have to solve the LP problem

max
x,λ

λ

subject to
2x1 − x2 + 2 ≥ 8λ,

5x1 − 2x2 + 3x3 + 2 ≥ 8λ,
x1 + 6x2 − x3 + 2 ≥ 8λ,

e.x = 1, x ≥ 0.

The Player I’s optimal strategies (in Fig.13) are x∗1 = .875, x∗2 = .125 and x∗3 = 0.

Figure13. Player I’s solution

Minimax problem of the Player II. For any pair of strategies (x, y) the MF
µ(x, y) depends on the expected payoff xAy. Assume that the degree of satisfaction
decreases linearly, we have

µ(xAy) =

⎧⎪⎨⎪⎩
1, xAy ≤ a
ā−xAy
ā−a , a ≤ xAy ≤ ā

0, xAy ≥ ā,

where ā and a are the worst and the best degree of satisfaction to the Player II,
respectively. These extremal values are determined by

ā = max
x

max
y

xAy = max
i∈Nm

max
j∈Nn

aij

a = min
x

min
y

xAy = min
i∈Nm

min
j∈Nn

aij

The MF of the fuzzy goal is shown in Fig.14.
The minimax solution of Player II is given by the following theorem.

Theorem 5. (Minimax solution). For a single-objective two-person matrix game
with a linearly fuzzy goal function, the Player II’s minimax solution w.r.t. a degree
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Figure14. Fuzzy goal membership function of Player II

of achievement of the fuzzy goal is equal to an optimal solution to the LP problem

min λ

subject to

1
ā− a

( n∑
j=1

aijyi − a

)
≤ λ+ 1, (i ∈ Nm)

e′y = 1, (e, y ∈ Rn),
y ≥ 0.

Proof: see (Nishizaki and Sakawa, 2001), page 41. �

In the Cook’s example Cook, 1976, a 3× 3 payoff matrix is given by

A =

⎛⎝ 2 5 1
−1 −2 6
0 3 −1

⎞⎠
We have ā = 6 and a = −2. Then we have to solve the LP problem

min
y,λ

λ

subject to
2y1 + 5y2 + y3 + 2 ≤ 8(1 + λ),

−y1 − 2y2 + 6x3 + 2 ≤ 8(1 + λ),
3y2 − y3 + 2 ≤ 8(1 + λ),

e.y = 1, y ≥ 0.

The Player II’s optimal strategies, in Fig.15, are

y∗1 = .625, y∗2 = 0, y∗3 = 0.375
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Figure15. Player II’s solution

Appendix

A Fuzzy number arithmetic

Two methods can be used in fuzzy arithmetics: one method is based on interval
arithmetics and the other uses the extension principle (Mareš, 1994 - Nguyen and
Walker, 2006).

A1. Interval arithmetics

Interval arithmetics are based on two properties of the FNs 3: 1) each FN is uniquely
represented by its α-cuts and 2) the α-cuts are closed intervals of real numbers for
all α ∈ (0, 1]. Let Ã and B̃ denote TFNs and let ∗ be one of the four arithmetic
operations: addition, substraction, multiplication and division. A fuzzy set Ã ∗ B̃ is
defined by the α-cuts

α(A ∗B) =α A ∗α B, for any α ∈ (0, 1].

Theorem 6. (First Decomposition Theorem). For every fuzzy set Ã ∈ F(R), we
have

Ã =
⋃

α∈[0,1]

αÃ,

where the α-cuts are converted into the fuzzy set αÃ, defined as

Ã = α αA.

Proof: see (Klir and Yuan, 1995, pages 41-42).�
The numerical example in (Klir and Yuan, 1995, page 105) considers two TFNs Ã
and B̃ defined in Fig.16.

Figure16. Fuzzy numbers Ã and B̃

3 This appendix is inspired from (Klir and Yuan, 1995). The computations and plots use
the software MATHEMATICA 7.0.1.
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The α-cuts are
αA = [2α− 1, 3− 2α] and αB = [2α+ 1, 5− 2α].

The four arithmetic operations on closed intervals are defined in Fig.17 4

Figure17. α-cuts with the arithmetic operations

The resulting FNs are represented in Figs.1819.

Figure18. Fuzzy arithmetics

A2. Extension principle
The extension principle supposes that the standard arithmetic operations on real
numbers are extended to FNs.

Theorem 7. (Extension principle). Let ∗ denote one of the four operations (addi-
tion +, substraction -, multiplication ., and division /), and let Ã, B̃ denote FNs.
We define a continuous FN Ã ∗ B̃ on R by

µ(Ã ∗ B̃)(z) = sup
z=x∗y

min
{
µÃ(x), µB̃(y)

}
, for all z ∈ R.

4 For the multiplication, we have

[a, b].[d, e] =
[
min{ad, ae, bd, be}, max{ad, ae, bd, be}].

For the division
[a, b]/[d, e] = [a, b].[1/e, 1/d],

we use the same rule, provided that 0 is not in [d, e].



Fuzzy Conflict Games in Economics and Management 215

Figure19. Arithmetics with triangular fuzzy numbers Ã and B̃

Proof: see (Klir and Yuan, 1995, pages 106-109).�

B Function principle

The Chen’s function principle is more appropriate for multiple (≥ 3) trapezoidal
FNs rather than the extension principle. Let two trapezoidal FNs Ã and B̃ be
Ã = (a1, a2, a3, a4;w1) and B̃ = (b1, b2, b3, b4;w2), where w1 and w2 denote the
height of Ã and B̃, respectively. The two FNs are illustrated in Fig.20.

We have to calculate C̃ = Ã ∗ B̃, where ∗ ∈ {+,−, ., /}. The resulting fuzzy
trapezoidal number is defined by

C = (c1, c2, c3, c4;w),

where w = min{w1, w2}. Defining the set

T = {a1 ∗ b1, a1 ∗ b1, a1 ∗ b4, a4 ∗ b1, a4 ∗ b4},

we deduce c1 = minT and c4 = maxT . Letting

s1 = min{x, µÃ(x) ≥ w}, s2 = min{x, µB̃(x) ≥ w},

t1 = max{x, µÃ(x) ≥ w}, t2 = max{x, µB̃(x) ≥ w},
we define the set

T1 = {s1 ∗ s2, s1 ∗ t2, t1 ∗ s2, t1 ∗ t2},
and deduce

c2 = min{T1} and c3 = max{T1}.
The results of the fuzzy arithmetic, using the function principle are shown in Fig.21.
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Figure20. Trapezoidal fuzzy numbers Ã and B̃

Figure21. Arithmetics with trapezoidal fuzzy numbers Ã and B̃
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Abbreviation Definition Symbol Definition

DM decision maker Ã fuzzy number A
FLG fuzzy logic game (A,A−, A+) (mean, lower, upper limit)
FLP fuzzy linear programming αA α-cut of A

FN fuzzy number αÃ special fuzzy set
K-T Kuhn-Tucker conditions en n-dimensional vector of ones
LP linear programming p̃ fuzzy tolerance
LR-type left-right representation δ−, δ+ left, right spread
MF membership function µÃ(x) left, right spread
MOT management of technology F(R) fuzzy sets family
QP quadratic programming Nn n positive integers
RHS right-hand side R real line
R&D research and development 	 ranking relation
TFN triangular fuzzy number (<)R inequality rule R

�, 
 fuzzy inequality∧
Min operator

⊕, �, ⊗ 
 fuzzy operations

Table1. Index of abbreviations and symbols
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