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1.1a Piecewise functions in Economics

upper envelope
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Note : no fixed cost, no other variable cost, constant wages

l=1

l=2

TC(q)=2q-2q2+q3+(q4/l3)+3l
TC=w L

MLP=q/L

w=100

q : production

MLP : mean labor productivity

TC : total cost

w : wages

l : size of equipment
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1.1b Piecewise ODEs

x(t)

t

x’’(t) + x(t) = { 0, -¥<t£0

2Öt, otherwise

0.5937 sin t

2Öt (cos t)2 – Ö(2p)  cos t ò0

Ö(2t/p)
cos (p s2/2 ) ds

+ 0.5937 sin t – Ö(2p)  sin t ò0

Ö(2t/p)

sin (p s2/2)  ds

+ 2Öt (sin t)2
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Poisson random arrivals Poisson  random arrivals

constant jump amplitude Normal random jump amplitude

x(t)

time

1.2 Piecewise deterministic processes

The SDE  of the Poisson process is defined  by dx(t) = a dt + b dq(t) where 
the increment dq(t) is driven by 
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x(t)

dq(t) = { 0,  w.p. 1-l dt

1, w.p. l dt
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1.3 Itô’s lemma for Poisson processes

Lemma (1-dimentional Itô formula for Poisson processes). Let x(t) be an Itô

process given by a SDE with constants a and b

dx(t) = a dt + b dq(t),

where the increment q(t)-q(t) in any interval of length |t-t| is Poisson distributed
Poi(l(t-t)) with mean l(t-t).

Let F(t,x(t)) a twice continuous differentiable function C2([0, ¥) x R).. Then we 

have the Itô’s formula

dF(t,x(t)) = (Ft+a Fx)dt + {F(t,x(t)+b)-F(t,x(t))} dq(t)
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1.4 Simple TFP stochastic model
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Let the total factor productivity (TFP) A(t) have a SDE with constants g and s

dA(t)/A(t)  =  g dt + s dq(t).

Applying Itô’ formula, we take F(t,A(t)) = ln A(t). Then we have Ft = 0, 

FA = A-1(t) and ln(A(t) + s A(t)) –ln A(t) = ln(1+s). According to the Itô’s 

formula we have 

d ln A(t) = g + ln(1+s) dq(t)

Then by integrating both sides and letting A(0) = A0, we have 

A(t) = A0 e 
g t + ln(1+s) {q(t)-q(0)}
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2.1 Optimal control with upward jumps

in the state variables

max òF(t, x(t),u(t)) dt +åj
p(Tj)(x(Tj

-)-x(Tj
+))

s.t.
x’(t) = f(t,x(t),u(t)), except at Tj ,j=1,…,J,

x(Tj
+) ³  x(Tj

-)
x(0)=x0, x(T)=xT given

Problem P1: maximizing a zero-discounted functional subject to J optimally

or randomly upward jumps, inside the time interval [0,T]. Find control u(t),

jumps dates Tj , value of the states at jumps x(Tj
-) and x(Tj

+)

Notation : 

Tj, j=1,…, J : dates of jumps ; x(Tj
-) value of the state variable immediately before

the jump; x(Tj
+) value of the state variable immediately after the jump; p(Tj) 

price for an extra unit of the state variable x at jump  Tj
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2.2 Optimal interior solution

Theorem : An optimal solution of the optimal control problem P1 with

upward jumps in the state variable must satisfy the necessary conditions

The Hamiltonian is given by

H(t,x(.),p(.),u(.))= F(t,x(t),u(t))+ p(t) f(t,x(t),u(t))

(i) Hu(.)     =  Fu(.)+ p(t) fu(.) = 0 ,

(ii) x(Tj
+)    ³   x(Tj

-) ,
(iii) x’(t)      =  Hp(.)=f(t,x(t),u(t)), except at Tj, j=1,…,J ,
(iv) p’(t)      =   - Hx(.) = - Fx(.)- p fx(.) ,

(v) p(t)       ³     p(t) for all t Î [0,T],
(vi) p(Tj)      =   p(Tj), j = 1,.., J,
(vii) H(Tj

-)-H(Tj
+)+ p’(Tj)(x(Tj

-)- x(Tj
+)) = 0  if Tj Î (0,T),  j=1,..., J
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2.3 Application to a fictive patenting model

Problem : A firm has a stock of patents x(0)=2 for a unique good. The rate of
producing u(t) is governed by the ODE x’(t) = - u(t). The patents have no cost.
The patent allow for producing a final product by using L fixed factor according to
the production function q = 2 Öu ÖL. The output unit price is 1 and L=1. The

firm can buy additional patents at p(t)= (t-1)2+1 but do not sell any
patents. The planning period is [0,2]. Suppose there is only one jump T1

at date 1. The firm will find u such that

maximize ò0

2
2 Öu(t) dt + p(T1)(x(T1

-) - x(T1
+))

s.t.
x’(t) = - u(t), x(0)=2, x(2)=1,

x(T1
+) ³ x(T1

-)
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2.4 Resolution of the problem with one jump

The Hamiltonian is H (x(.), p(.), u(.)) = 2 Öu(t) – p (t) u(t). The FOCs are

given by (i) Hu= 1/Öu- p = 0, (ii) x’(t) = Hp = - u, (iii) p’(t) =-Hx = 0

(iV) x0 = 2, xT = 1. We deduce that u(t) = u, p(t) = p and dx(t) = - u dt.

Hence, u(t) = ½, p(t) =Ö2, x(t) = 2 -1/2 t.

0 £ t < 1 (to the left)

{u(t)=1, x(0)=2}
Þ{ODE: x’(t)=-1,x(0)=2},

p(t)=1/Öu(t)=1,

lim t®1- x(t)= lim e®0 {2 –(1-e)}= 1

{u(t)=1, x(2)=1}
Þ{ODE: x’(t)=-1,x(2)=1},

p(t)=1/Öu(t)=1,

lim t®1+ x(t)= lim e®0 {3 –(1+e)}= 2

The optimality condition H(1-)- H(1+)+ p’(1) (x(1-)-x(1+)) = 0 is satisfied.
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2.5 Interior upward jump solution

1

2

2

0 1

no jump jump at t=1

Ö2

0 1 2

2
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3.1a Innovation Queueing Game :

presentation

◼ Each firm of an industry spends the same
amount of $ 1million R&D

◼ The produced and patented innovation yields an 
amount of $ 10 millions to the winner

◼ The probability that one innovation is 
successfully developed depends on the total 
amount invested by the industry.

◼ The more the industry will invest, the greater the 
probability of success will be, with diminishing 
returns.
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3.1b  Innovation Queueing Game :

How much would be invested in the industry ?

p
ro

b
a
b

il
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y

R&D investment of industry (in million $)

1        2        3       4        5       6        7
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R&D ER MR MC

1 3.0 3.0 1.0

2 5.0 2.0 1.0

3 5.667 0.667 1.0

4 6.1 0.433 1.0

5 6.1 0. 1.0

6 6.1 0. 1.0

7 6.1 0. 1.0

Efficient number of firms

developing this innovation

MR<MC
ER : expected revenu

MR : marginal revenu

MC : marginal cost

in millions $
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3.1c  Innovation Queueing Game : 

how many firms will attend to the innovation race ?

1

RD Pr ER MC NB Y/N

1 .3 3. 1 2. Y
2 .25 2.5 1 1.5 Y
3 .1889 1.889 1 0.889 Y
4 .1525 1.525 1 0.525 Y
5 .122 1.220 1 0.220 Y
6 .10175 1.1017 1 0.1017 Y
7 .0871 0.871 1 -0.129 Nnumber of firms

attending  the race

$10

0

$10

0

2

3

1

2

3

industry

1/3

1/3

1/3

0.5667

0.4333

0.1889

0.1444

firm

S
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3.2 Stochastic innovation game : 

Loury (1979), Lee & Wilde (1980), Dockner et al. (2000)

1
2

N

time to innovate

R&D
efforts

International  Conference Game Theory and Management , St.Petersburg June 28-29, 2007 (A.A. Keller)

...

3

R&D efforts

F

F
F

firm 1

firm N

t t t t
12 N 3

… ……

the firm 2 wins

the innovation race the other firms lose the innovation race

}
strategies

relevant

payoff

human capital

probability distributions

competitive environment

(random dates)
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3.3 Characteristics of the game

◼ Economic framework : N competitive firms try to introduce innovations (new products,

technologies, services). The winning firm acquires a monopolistic position and the N-1

competitors are kept out of the market by a patent protection. The firms have competing R&D

projects and no one knows the invested R&D of others. R&D expenses exert positive externalities,

with higher accumulation of know-how.

◼ Technical assumptions : the times ti to complete a project is random and i.i.d. with probability

distributions Fi = P{ti < t}. The date of innovation is min {ti, i=1,…,N}.. The rate F’i is proportional to

the R&D efforts. The cost of R&D efforts is quadratic in the investment rate.

◼ A stochastic differential game : this game belongs to the class of piecewise deterministic games

with N+1 modes. Before the innovation occurs, the mode is zero. The system will then switch to
mode i Î {1,2,...,N}. All players are supposed to maximize the expected discounted profit. The profit

consists in 3 terms that are weighted by their probability : present value of the net benefits in case

of succeeding the innovation race, present value of the net benefits in case of a lossing the race,

and present value of R&D efforts. Taking the expectation leads to a deterministic control problem.
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3.4 Solving the innovation game

◼ The distributions Fi’s (i=1,…,N) are the state variables and the rates of R&D efforts

ui’s (i=1,…,N) the controls. From the current value Hamiltonians the FOCs are

deduced (N+1 boundery conditions). The game is transformed to an exponential

game. In exponential games, the state variable do not enter the RHS of the system

dynamics. However, this variable enters the objective function in an exponential way.

◼ All firms observe and base their strategies upon the N-dimentional vector z whose

components are defined by z’i = ui. Let the aggregate stock of know-how be

y = e
-lSzj(t). The players condition their strategies rather on y (state variable) than

on (z1, z2, …,zN).

◼ Let us consider a Nash equilibrium with open-loop strategies. The solutions of the

state and costate equations are independently determined. The effort rates in R&D

ui(t), i=1,…,N are independent of the industry-wide stock of know-how y. All firms

have identical effort strategies. The open loop equilibrium is Markov perfect.
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Thank You for your attention
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3.1 Queue model  A/B/X/Y/Z

system

arrivals

leaving

M/M/1 : Poisson input ( )/exponential service (m)/single-server (1)

waiting

A : arrival- time distribution (eg. Poisson)
B : service-time distribution (eg. exponential)
X : parallel service channels
Y : restriction on system capacity
Z : queue discipline (eg. FCFS)

service

P0 P1

Pj Pn
l l l l l

l

m m m mm
……

P’0(t)= -lP0+mP1, P’1(t)= lP0- lP1-mP1+mP2 ,…, P’n(t)=lPn-1- lPn-mPn+mPn+1
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