

Predator-Prey Evolution Strategy
for Solving Multi-Objective Optimization Problems

André A. Keller
Laboratoire d’Informatique Fondamentale de Lille / SMAC

Université de Lille Nord de France
Villeneuve d’Ascq,59655 France，+33(0)640123190

Andre.Keller@univ-lille1.fr

Abstract—This paper introduces to a particular algorithm
inspired from Nature for solving multi-objective optimization
problems. The predator-prey strategy is used for finding Pareto
optimal fronts. This is the first essential step in the decision-
making process, in which the decision makers are confronted to
multiple objectives. The computations have been carried out by
using software packages, such as Wolfram Mathematica ® and
the GA-based optimization software packages GENOCOP III
and NSGA II1.

Keywords- multi-objective optimization problem; Predator-prey
strategy; Pareto-optimal front;

I. INTRODUCTION

This paper introduces to the predator-prey (PP) algorithm
for solving continuous multi-objective optimization problems.
Solving automated problems by using Darwinian principles
originated in the fifties. The PP algorithm belongs to the class
of evolution strategies by I. Rechenberg [12] and H-P.
Schwefel [13], one of the three components of the evolutionary
computation, besides genetic algorithms (GAs) by J.H. Holland
and evolutionary programming by L.J. Fogel. The PP evolution
strategy also belongs to the class of non-elitist algorithms2. [1,
2, 5].

II. EVOLUTIONARY OPTIMIZATION

A. Single Objective Optimization Problem
Let the nonlinear multi-dimensional bounded programming

problem of the form

() []min imize , s.t. ,nf ∈ ∈
x

x x x xx  .

The following two-dimensional test problem, inspired from
[7], is a weighted combination of sinc functions. A sinc
function is defined by

()
()

()
2 2

2 2

2 2

sin
: 50 , ,

x y
g x y x y

x y

+
= − + ≡

+
x x

1 GENOCOP is for Genetic algorithm for Numerical Optimization of
Constrained Problems. It has been developed at UNC Charlotte/USA. NSGA
is for Nondominated Sorting Algorithm. It has been developed at Kanpur
Genetic Algorithms Laboratory/ India.[3]
2 In this class, we can find also the vector evaluated GA , a weight based GA,
and a niched-Pareto GA.[2]

The objective function is

() () ()
() []

3 10, 10 2 5, 5

 1.5 1, 2 , , 20,10

f g x y g x y

g x y x y

= + + + − +

+ − + ∈ −

x

Figure 1 First ten generations.

GAs are stochastic search techniques inspired from the genetic
processes of biological organisms. The mechanisms consist in
encoding and reproducing populations. The adequacy of these
principles to real-world optimization problems has been proved
[9, 11, 14]. In Mathematica, the real-valued GA consists in
several routines : a population of chromosomes is created
randomly and the genetic processes of selection, crossover and

mailto:Andre.Keller@univ-lille1.fr

mutation are then used at each iteration, to create the next
generation.

For this demonstration, the GA is ended after 10 generations .
The best result we obtain is ()ˆ 9.1727, 9.7184= − −x . The

exact global optimum is ()* 9.898, 9.966= − −x (comparable
to [8]). Fig.1 pictures the first ten generations.

B. Multi-Objective Optimization Problem
Multi-objective optimization problems (MOOPs) involve a

simultaneous optimization of multiple objectives. Because of
possible conflicts between objectives, trade-offs exist. The set
of trade-off designs that cannot be improved without
deteriorating another objectives is the Pareto set.
The MOOP takes the generalized form

() () ()()
()

()
[]

1min imize , ,

 s.t. 0, 1, ,

 0, 1, ,

 ,

n K

i

i

f f

g i P

h i P M

∈
=

≤ =

= = +

∈








x
f x x x

x

x

x x x









.

Definition 1 (Dominance relation) Let , m∈f g  , then f
dominates g (f g), if and only if (1) i if g≥ for all

{ }1, ,i m∈  and (2) { }1, , : j jj m f g∃ ∈ >> .

Definition 2 (Pareto set). Let m⊆F  a set of vectors, then the
Pareto set * ⊂F F is such that *F contains all non-dominated
∈g F by ∈f F . Then , we may define the Pareto set as

{ }* s.t. := ∈ ∈F g F f F f g 

The test example by [2], pp. 176-178 is with two
objectives, two inequality constraints and bounds. We have

() () ()

()
()

[] []

2

2
1 1 2

1

1 1 2

2 1 2

1 2

1
min imize ,

 s.t. 6 9 0

 1 9 0

 0.1,1 , 0,5

x
f x f

x

g x x

g x x

x x

∈

+
= ≡ ≡

≡ − − ≤

≡ − + ≤

∈ ∈

 
 
 






x
f x x x

x

x






The Pareto front is approximated by using the GA. The

results are illustrated in the decision variable space and in the
objective space3. Fig.2 shows the successive approximations
over 200 iterations.

The software package NSGA II for this application is a fast
and elitist multi-objective evolutionary algorithm (MOEA) ,
sorting the population in different fronts, by using the non-
domination order relation. The system uses a Pareto ranking

3 In the objective space, the lower and upper boundaries correspond

respectively to 2 0x = and 2 5x = . Indeed, we have ()2 2 11 /f x f= +

procedure and incorporates a fitness sharing. To form the next
generation, the algorithm combines the current population and
its offspring with bimodal crossover and polynomial
operators4.

Figure 2 First 200 generations of the Deb’s test example

III. PREDATOR-PREY ALGORITHM

In the Predator-Prey (PP) algorithm by Laumann et al. [10],
a prey represents one feasible solution and a predator one
objective. The algorithm mimics the natural phenomenon,
according to which the predator eliminates the weakest prey.
The PP algorithm is also used to find an approximated set of
the Pareto-optimal front [4, 6].

A. Principles
All the preys are placed at the vertices of a toroidal grid as

in Fig. 4. With this particular spatial structure, all the preys
can be attained by a random walk with an equal probability.
Suppose that there is a strict mapping of one predator to one
objective. The predators are placed randomly on the grid
search. Each predator pursues the prey within its current
neighborhood and according to its own objective. Suppose that
a neighborhood is defined by one step (radius one) as in Fig. 4
The principles consist in random walks and in replacing the
worst solutions with mutated solutions. More precisely, a
predator selects in its selection neighborhood (SN) the worst

4 For this study, the package has been implemented by the author in a DOS
system by using the compiler ACC from Absoft C/C++. It is also connected to
Mathematica for preparing the inputs and analyzing the outputs.

prey which will be deleted. A reproduction neighborhood
(RN) is spanned around the empty vertex. At this place, an
offspring is created by mutating a randomly chosen prey in the
RN.

B. Basic Algorithm
The basic algorithm for one generation may consist in the

following eight steps

1. Generate a population of preys randomly in the
feasible region of the optimization problem.

2. Place the preys on the vertices of a toroidal grid
graph.

3. Place the predators at random on vertices of the
grid graph (even in presence of a prey).

4. Assign only one objective to each predator.

5. Evaluate preys which stay in the SN and select the
worst prey (the largest fitness for a minimization
problem).

6. Delete the worst prey and replace it by an
offspring in the RN with a higher fitness.

7. Proceed to a Gaussian mutation on the offspring.

8. Let the predators take a random walk in their
neighborhood.

The expected result is to find the best approximated Pareto-
optimal front. The preys with good performances w.r.t. all the
objectives have more chance to survive and then to
approximate the Pareto front.

C. Illustrative Problem
The following problem is drawn from [2], p. 176.

()

()

[] []

2

2

1 1

2
2

1

1 2

 min imize

1
 min imize

s.t. 0.1,1 , 0,5

f x

x
f

x

x x

∈

∈

=

+
=

∈ ∈








x

x

x

x





In the following, the steps of one generation will be
illustrated. Fig.3 pictures, in the objective space, ()1 2,f f , a
random population of 36 preys and 2 predators. These
populations have to be drawn within the feasible variable
space of the optimization problem.

Figure 3 Random populations of predators and prey.

Consider the predator 1, to which the objective 1 has been
assigned. Its position on the grid graph and its SN are shown
in Fig. 4. According to Table I, prey 16 has the worst fitness
()1 0.658,1.936 0.658f = and will be suppressed from the

grid graph. Around prey 16, RN is described by the set of
preys { }10,15,17, 22 . A new prey is created by selecting
randomly one of the preys belonging to the RN and by
mutating it. The Gaussian mutation consists in adding to each
of the coordinates a zero-mean Normal distribution , such as
we get () 0,1= +y x σN . Suppose that the mutation

strength is 0.05σ = for all the components. The acceptation
of the new prey requires that () ()1 1f f<y x .

Figure 4 Toroidal spatial population structure.

The results for this first generation for the two predators
are illustrated in Fig. 5.

Figure 5 First generation of the PP algorithm.

The extended computation of this problem to 1,000
iterations per objective is presented by [2], p.228 for 100 preys
(a 10 10× grid) with the same mutation strength. The preys
well spread along the whole the Pareto-optimal front, even
with more solutions in its intermediate region. However, the
diversity of the outputs disappears with more than 10,000
iterations. This is one limitation of this elementary version of
the PP algorithm.

IV. CONCLUSION
Further improvements of the PP evolution strategy have

been proposed, such as : the implementation of a diversity-
preserving operator (the problem just mentioned above with
numerous iterations), the affectation of more than one objective
to each predator (e.g. a weighted sum of objectives), and
multiple variable mutation rates (e.g. a decreasing mutation
schedule).

TABLE I. SELECTION NEIGHBORING OF PREDATOR 1

Prey
Selection neighboring at vertex 15

1x 2x ()1f x

9
 0.587  4.464 0.587 

0.405

0.658

0.390

14 0.405 0.988

16 0.658 1.936

21 0.390 0.343

REFERENCES
[1] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary

computation: comments and current state”, IEEE Trans. on Evol.
Comput., vol.1, no 1, 1997, pp.3-17.

[2] K. Deb, Multi-Objective Optimization using Evolutionary
Algorithms, Chichester, UK: J. Wiley, 2001.

[3] K. Deb and U.B. Rao N,,”Investigating predator-prey algorithms
for multi-objective optimization”, Kanpur Genetic Algorithms
Laboratory (KanGAL), Kanpur, India, 2005.

[4] D.B. Fogel,, “An introduction to simulated evolutionary
optimization, IEEE Trans. on Neural Networks, vol. 5, no 1, 1994,
pp. 3-14.

[5] C.M. Fonseca and P.J. Fleming, “An overview of evolutionary
algorithm in multiobjective optimization”, Evol. Comput., vol. 3,
no 1, 1995, pp. 1-16.

[6] C. Grimme and J. Lepping, “Designing multi-objective variation
operators using a predator-prey approach”, Proc. Int. Conf. on
Evolutionary Multi-Criterion Optimization, Berlin: Springer-
Verlag, 2007, pp. 21-35.

[7] C. Jacob, Illustrating Evolutionary Computation with
Mathematica, San Diego, CA: Academic Press, 2001.

[8] A.A. Keller, “Genetic search algorithms to fuzzy multiobjective
games: a Mathematica implementation”, 10th WSEAS Int. Conf. on
Applied Computer Science (ACS’10), Morioka, Japan, 2010, pp.
351-359.

[9] J.R. Koza, Genetic Programming: on the Programming of
Computers by Means of Natural Selection, Cambridge, Mass. The
MIT Press, 1992.

[10] M. Laumann, G. Rudolph, and H.-P. Schwefel, “A spatial
predator-prey approach to multi-objective optimization: a
preliminary study”, in A.E. Eiben, T. Bäck, M. Schoenauer, and
H.-P. Schwefel (eds), PPSN, Amsterdam, Hollland: Springer-
Verlag, 1998, pp. 241-249.

[11] Z. Michalewicz, Genetic Algorithms+ Data Structures=Evolution
Programs, 3rd ed., Berlin: Springer-Verlag, 1999.

[12] I. Rechenberg, Evolutionsstrategie Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution, Stuttgart,
Germany: Fromann-Holzboog Verlag, 1973.

[13] H.-P. Schwefel, Numerische Optimierung von Computer-Modellen
mittels der Evolutionsstrategie, Basel: Birkhäuser, 1977.

[14] E. Zitler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach”, IEEE
Trans. on Evol. Comput., vol. 3, no 4, 1994, pp. 251-271.

	I. INTRODUCTION
	II. EVOLUTIONARY OPTIMIZATION
	A. Single Objective Optimization Problem
	B. Multi-Objective Optimization Problem

	III. PREDATOR-PREY ALGORITHM
	A. Principles
	B. Basic Algorithm
	C. Illustrative Problem

	IV. CONCLUSION
	References

