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Abstract—This paper introduces to a particular algorithm 
inspired from Nature for solving multi-objective optimization 
problems. The predator-prey strategy is used for finding Pareto 
optimal  fronts. This is the first essential step in the decision-
making process, in which the decision makers are confronted to 
multiple objectives. The computations have been carried out by 
using  software packages,  such as  Wolfram Mathematica ® and 
the GA-based optimization software packages GENOCOP III 
and NSGA II1. 
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I. INTRODUCTION 

This paper introduces to the predator-prey (PP) algorithm 
for solving continuous multi-objective optimization problems. 
Solving automated problems by using Darwinian principles 
originated in the fifties. The PP algorithm belongs to  the class 
of evolution strategies by I. Rechenberg [12] and H-P. 
Schwefel [13], one of the three components of the evolutionary 
computation, besides genetic algorithms (GAs) by J.H. Holland 
and evolutionary programming by L.J. Fogel. The PP evolution 
strategy also belongs to the class of  non-elitist algorithms2. [1, 
2, 5].  

II. EVOLUTIONARY OPTIMIZATION 

A. Single Objective  Optimization Problem 
Let the nonlinear multi-dimensional bounded programming  

problem  of the form 

( ) [ ]min imize  ,   s.t.  ,nf ∈ ∈
x

x x x xx  . 

The following two-dimensional test problem, inspired from 
[7], is a weighted combination of  sinc functions. A sinc 
function is defined  by 
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1 GENOCOP is for Genetic algorithm for Numerical Optimization of 
Constrained Problems. It has been developed at UNC Charlotte/USA. NSGA 
is for Nondominated Sorting Algorithm. It has been developed at Kanpur 
Genetic Algorithms Laboratory/ India.[3]  
2 In this class, we can find also the vector evaluated GA , a weight based GA, 
and a niched-Pareto GA.[2] 

The objective function  is  
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Figure 1 First ten generations. 

GAs are stochastic search techniques inspired from the genetic 
processes of biological organisms. The mechanisms consist in 
encoding and reproducing populations. The adequacy of these 
principles to real-world optimization problems has been proved 
[9, 11, 14]. In Mathematica, the real-valued GA consists in 
several routines : a population of chromosomes is created 
randomly and the genetic processes of selection, crossover and 
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mutation are then used at each iteration, to create the next 
generation. 

For this demonstration, the GA is ended after 10 generations . 
The best result we obtain is ( )ˆ 9.1727, 9.7184= − −x . The 

exact global optimum is  ( )* 9.898, 9.966= − −x (comparable 
to [8]). Fig.1 pictures the first ten generations. 

B. Multi-Objective Optimization Problem 
Multi-objective optimization problems (MOOPs) involve a 

simultaneous optimization of multiple objectives. Because of 
possible conflicts between objectives, trade-offs exist. The set 
of trade-off designs that cannot be improved without 
deteriorating another objectives  is the Pareto set. 
The MOOP  takes the generalized form 
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Definition 1 (Dominance relation) Let , m∈f g  , then f
dominates g  ( f g ), if and only if  (1) i if g≥  for all 

{ }1, ,i m∈   and  (2) { }1, , : j jj m f g∃ ∈ >> . 

Definition 2 (Pareto set). Let m⊆F  a set of vectors, then the 
Pareto set * ⊂F F  is such that *F contains all non-dominated 
∈g F by ∈f F . Then , we may define the Pareto set as 

{ }*  s.t.  := ∈ ∈F g F f F f g   

The test example by [2], pp. 176-178  is with two 
objectives, two inequality constraints and bounds. We have 
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The Pareto front is approximated by using the GA.  The 

results are illustrated in the decision variable space and in the 
objective space3. Fig.2 shows the successive approximations 
over 200 iterations. 

The software package NSGA II for this application is a fast 
and elitist multi-objective  evolutionary algorithm (MOEA) , 
sorting the population in different fronts, by using the non-
domination order relation.  The system uses a Pareto  ranking 

                                                           
3  In the objective space, the lower and upper boundaries correspond 

respectively to 2 0x =  and 2 5x = . Indeed, we have  ( )2 2 11 /f x f= +  

procedure and incorporates a fitness sharing. To form the next 
generation, the algorithm combines the current population and 
its offspring with bimodal crossover and polynomial 
operators4. 

 
Figure 2 First 200 generations of the Deb’s test example 

III. PREDATOR-PREY ALGORITHM 

In the Predator-Prey (PP) algorithm by Laumann et al. [10], 
a prey represents one feasible solution and a predator one 
objective. The algorithm  mimics the natural phenomenon, 
according to which the predator eliminates the weakest prey. 
The PP algorithm is also used to find an approximated set of 
the Pareto-optimal front [4, 6]. 

A. Principles 
All the preys are placed at the vertices of a toroidal  grid as 

in Fig. 4. With this particular spatial structure, all the preys 
can be attained by a random walk with an equal probability. 
Suppose that there is a strict mapping of one predator to one 
objective. The predators are placed randomly on the grid 
search. Each predator pursues the prey within its current 
neighborhood and according to its own objective. Suppose that 
a neighborhood is defined by one step (radius one) as in Fig. 4 
The principles consist in random walks and in replacing the 
worst solutions with mutated solutions. More precisely, a 
predator selects in its selection neighborhood (SN) the worst 

                                                           
4 For this study, the package has been implemented by the author in a DOS 
system by using the compiler ACC from Absoft C/C++. It is also connected to 
Mathematica for preparing the inputs and analyzing the outputs. 



 

prey which will be deleted. A reproduction neighborhood 
(RN)  is spanned around the empty vertex. At this place, an 
offspring is created by mutating a randomly chosen prey in the 
RN. 

B. Basic Algorithm 
The basic algorithm for one generation may consist in the 

following eight steps  

1. Generate a population of preys randomly in the 
feasible region of the optimization problem. 

2. Place the preys on the vertices of a toroidal grid 
graph. 

3. Place the predators at random on vertices of the 
grid graph (even in presence of a prey). 

4. Assign only one objective to each  predator. 

5. Evaluate  preys which stay in the SN and select the 
worst prey (the largest fitness for a minimization 
problem). 

6. Delete the worst prey and replace it by an 
offspring in the RN with a higher fitness. 

7. Proceed to a Gaussian mutation on the offspring. 

8. Let the predators take a random walk in their 
neighborhood. 

The expected result is to find the best approximated Pareto-
optimal front. The preys with good performances w.r.t. all the 
objectives have more chance to survive and  then to 
approximate the Pareto front.  

C. Illustrative Problem 
The following  problem is drawn from [2], p. 176. 
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In the following, the steps of one generation will be 
illustrated. Fig.3 pictures, in the objective space, ( )1 2,f f , a 
random population of 36 preys and 2 predators. These 
populations have to be drawn within the feasible variable 
space of the optimization problem. 

 
Figure 3 Random populations of predators and prey. 

Consider the predator 1, to which the objective 1 has been 
assigned. Its position on the grid graph and its SN  are  shown 
in Fig. 4. According to Table I, prey 16 has the worst fitness 
( )1 0.658,1.936 0.658f =  and  will be suppressed from the 

grid graph. Around prey 16, RN is described by the set of 
preys { }10,15,17, 22 . A new prey is created by selecting 
randomly one of  the preys belonging to the RN and by 
mutating it. The Gaussian mutation consists in adding to each 
of the coordinates a zero-mean Normal distribution  , such as 
we get ( ) 0,1= +y x σN . Suppose that the mutation 

strength is 0.05σ = for all the components. The acceptation 
of the new prey requires that ( ) ( )1 1f f<y x . 

 
Figure 4 Toroidal spatial population structure. 

The results for this first generation for the two predators 
are illustrated  in Fig. 5. 
 



 

 
Figure 5 First generation of the PP algorithm. 

The extended computation of this problem to 1,000 
iterations per objective is presented by [2], p.228 for 100 preys 
(a 10 10×  grid) with the same mutation strength. The preys 
well spread along the whole the Pareto-optimal front, even 
with more solutions in its intermediate region. However, the 
diversity of the outputs  disappears with more than 10,000 
iterations. This is one limitation of this elementary version of 
the PP algorithm. 

IV. CONCLUSION 
Further improvements of the PP evolution strategy have 

been proposed, such as : the implementation of a diversity-
preserving operator (the problem just mentioned above with 
numerous iterations), the affectation of more than one objective 
to each predator (e.g. a weighted sum of objectives),  and 
multiple variable mutation  rates (e.g. a decreasing mutation 
schedule). 

 

 

 

TABLE I.  SELECTION NEIGHBORING OF PREDATOR 1 

Prey 
Selection neighboring at vertex 15  

1x  2x  ( )1f x  

9
 0.587   4.464  0.587   

0.405  

0.658  

0.390  

14  0.405  0.988  

16  0.658  1.936  

21  0.390  0.343  
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