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Abstract: This study extends to environmental economics, the use of the conventional circuit analysis and control
in engineering. Resources and environmental management problems are investigated with help of continuous-time
systems: growth models with polluting events and fishery models with open-access to the industry. This study
introduces the fundamental block-diagram approach, with small-size applications to pollution and fisheries man-
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and solving the systems, symbolically and numerically.
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1 Elementary circuit theory

The fundamental elements of circuit theory are no-
tably from [1, 4, 8]. The computations are using
the specialized MATHEMATICA packages: ”Control
Systems Professional”, ”Polynomial Control System”
and ”SchematicSolver”.

1.1 Signals

Definitions. Signals are abstract or physical ele-
ments which convey information about the behavior
of a system . The signals are often represented as a
function of time. The variation of the signal value is
the waveform. The signals are of two main types: the
analog signals for continuous-time systems and the
discrete signals for discrete-time systems. An analog
signal is of the form x(t) 1. The fundamental analog
and discrete basic signals are the unit impulse signal
and Dirac distribution , the unitstep signal and Heav-
iside function , the unit ramp signal , unit sinusoidal
signal , unit exponential signal. A sinusoidal input
signal may be exponentially modulated, such as

u(t) = Aeαt cos(ωt + ϕ),

1A discrete signal may be deduced from x(t) by uniform sam-
pling every T units of time, such as

x(kT ) = x(t), t = 0,±T,±2T, . . . ,±kT, . . . ,

where T denotes the time step (or sample interval) in seconds (s),
and f = 1

T
, the sampling frequency (i.e. the number of samples

per unit of time) in Hertz (Hz) or cycle/second.

where A denotes the amplitude, 2π/ω the period, ω =
2πf the angular frequency and ϕ the phase 2.

1.2 Phasor Representation

Definitions. Let a sinusoidal signal be defined by

x(t) = A cos(ωt + φ),

where A is the magnitude, ω the angular frequency
in radian/second and φ the phase angle in radian or
in degree. The wave reaches a peak at t = −φ/ω,
since we have ωt + φ = 0. The wave length is the
period T and the frequency is defined by f = 1/T
and measured in Hz. The frequency f and the angu-
lar frequency ω are related by ω = 2πf . The polar
representation of a phasor V = A∠φ is encoding the
amplitude and phase of a sinusoid and represents 3 the
complex constant Aejφ.

Phasor arithmetic. The sum of two phasors V 1 and
V 2 is A1∠φ1 + A2∠φ2. The multiplication of a pha-
sor V = A∠φ by a complex constant Bejθ pro-
duces the phasor (AB)∠(θ + φ). The time differ-
entiation of the sinusoidal x(t) = A cos(ωt + φ) is
x′(t) = −ωA sin(ωt + φ). The phasor of the deriva-
tive signal is−ωA∠φ−90 = ωA∠φ+90◦. Differen-
tiating a sinusoidal signal is equivalent to multiplying

2This expression is the real part of Aejϕest, where s = α+jω
is a complex number.

3The phasor also refers to Aejφejωt. Indeed, we have

A cos(ωt + φ) =
A

2
ej(ωt+φ) +

A

2
e−j(ωt+φ).

The sine wave is then the real part of Aej(ωt+φ).
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the phasor by jω = ejπ/2 (i.e a multiplication by ω
and a rotation by 90◦). Similarly, integrating a phasor
corresponds to the multiplication by

(jω)−1 =
e−jπ/2

ω
.

1.3 Linear Time-invariant (LTI) Systems

Definitions. LTI systems are represented by differ-
ential (or difference) equations with constant (or vari-
able) coefficients, s.a. with the nth-order system

n∑
i=0

aiy
(i)(t) =

m∑
k=0

bkx
(k)(t), n ≥ m

where x denotes the system input, y the system output,
y(i)(t) the generic ith time derivative of y(t) such that
y(i)(t) ≡ diy(t)/dti and x(k)(t) the generic kth time
derivative of x(t). Using the differential operators, we
get the algebraic expression

n∑
i=0

aiD
iy(t) =

m∑
k=0

bkD
kx(t). (1)

For a known input x(t) and given coefficients a′s
and b′s, a unique solution y(t) is obtained for a set
of the n initial conditions, about y(t) and the n − 1
derivatives :

y(0) = y0, y
′(0), y′′(0), . . . , y(n−1)(0).

Total response decomposition. The total response
may be divided into specific components according
two different ways. Firstly, the total response is di-
vided into a free response and a forced response: the
free response or zero-input response only depends on
the initial conditions; the forced response or zero-state
response only depends on the input. Secondly, the to-
tal response is the sum of a transient response compo-
nent and a steady-state response: the transient compo-
nent will approach zero as time tends to infinity, while
the steady-state component does not.

1.4 Transfer Function Representation

Definitions. Let a SISO (Single Input-Single Out-
put) system be the linear constant-coefficients ODE
(1). Applying the L-transform to the signals, we get( n∑

i=0

ais
i

)
Y (s) =

( m∑
k=0

bks
k

)
X(s).

The system transforms the input signal X(s) by the
rational transfer function (TF) H(s), s.a.

H(s) =
B(s)
A(s)

, B(s) ≡
m∑

k=0

bks
k, A(s) ≡

n∑
i=0

ais
i.

The poles are the (real and complex) roots of the equa-
tion A(s) = 0. The zeros are the (real and complex)
roots of the equation B(s) = 0. In factored form, the
pole-zero representation is

H(s) = H0

∏
k
(s− zk)∏

i(s− pi)
,

where H0 denotes the scale factor, z’s and p’s are the
zeros and poles, respectively 4.

Bode diagrams. To display the function H(s) of the
complex s, two plots are necessary: one is the mag-
nitude plot for the amplitude |H(s)|, the other is the
phase plot for the phase arg H(s).
Given a TF with a real pole of the form

H(s) =
1

s
ω0

+ 1
,

where ω0 denotes the break frequency. When s = jω,
the phasor representation is

H(jω) = |H(s)|∠H(jω).

The magnitude in dB is

|H(jω)| = −20 log10

√
1 +

( ω

ω0

)2
.

The low frequency asymptote is one horizontal. The
high frequency asymptote is a straight line with slope
of -20 dB/decade, through the break frequency ω0 at
0 dB. The maximum error between the approximated
linear piecewise magnitude and the true magnitude is
approximately 3 dB (−20 log10

√
2 = −3.01). Fig-

ure 1 shows the approximate magnitude at zero, when
ω0 = 10, until the break frequency and then dropping
at 20 dB/decade. The TF’s phase with a single real
pole is

∠H(jω) = −∠
(
1 + j

ω

ω0

)
= − tan−1

( ω

ω0

)
.

At low frequencies (ω << ω0), the approximated
phase is 0 rad. At high frequencies (ω >> ω0), the
approximated phase is −π

2 rad. At the break fre-
quency (ω = ω0), the phase is −π

4 rad.
4The concept of partial transfer function (PTF) is adapted for

multiple-input, multiple-output (MIMO) systems, with m inputs
x1(t), x2(t), . . . , xm(t) and n outputs y1(t), y2(t), . . . , yn(t).
For MIMO systems, the PTF between the ith input and kth output
is defined by the ratio of theL-transform Yi(s) to theL-transform
Xk(s), the other inputs being identically zero.
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Figure 1: Bode diagrams of a TF with a real pole

1.5 State-space System

The state-space of a continuous-time system consists
in two matrix equations: the state equation and the
observation equation

x′(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where u(t) is a vector of inputs and y(t) a vector of
outputs. The constant coefficients matrix A denotes
the state matrix, B is the input matrix, C the output
matrix and D the direct transmission matrix. The co-
efficient matrices B, C, D may be time dependent.
The block-diagram is represented in Figure 2.
The time-domain response is given by

x(t) = e(t−t0)Ax(t0) +
∫ t

t0

e(t−τ)AB(τ)u(τ)dτ.

The solution x(t) is the sum of a zero-input response
given by the first element, and the zero-state response
given by the second element. 5

5For a TF H(s) whose n poles are all real distinct, the PFE
may be written as

H(s) =
Y (s)

U(s)
=

nX
j=1

Kj

s + pj
≡

nX
j=1

Xj(s),

where the p’s denote the poles and K’s, adequate constant values.
Taking the L−1-transform , we deduce the state-space system

Figure 2: State-space block-diagram of a continuous-
time system

1.6 System Stability: Concepts and Criteria

A system is stable if its impulse response tends to-
wards zero, as time tends to infinity. A bounded sig-
nal is such that its absolute value is never greater than
some existing quantity. A system is stable if every
bounded perturbation on a system has a bounded re-
sponse impact.

BIBO stability. According to the BIBO (Bounded
Input- Bounded Output) stability, every bounded input
u(t) to a system results in a bounded output y(t) over
the time range [t0,∞), for all initial conditions in t0
and inputs. Then we have

‖u(t)‖ ≤ 1, t ≥ t0 ⇒ ‖y(t)‖ ≤ k,

where k denotes some positive constant. For
continuous-time system, the BIBO condition is the
convergent integral∫ ∞

−∞
|h(t)|dt < ∞,

whereas, the discrete-time condition is

∞∑
n=−∞

|h(n)| < ∞.

Let a state-space SISO system be

x′(t) = x(t) + u(t),
y(t) = x(t).

x′(t) =

0BB@
−p1 0 . . . 0
0 −p2 . . . 0

. . . . . . . . . . . .
0 0 . . . −pn

1CCA x(t) +

0BB@
K1

K2

. . .
Kn

1CCA u(t),

y(t) =
`

1 1 . . . 1
´

x(t).
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The solution is

y(t) = x(0)et + et

∫ t

0

u(τ)e−τdτ.

For the initial condition x(0) = −1 and a unit step
function u(t) = 1, t ∈ [0,∞), y(t) is bounded with
y(t) = −1 for all the time. However, if u(t) = 0 then
y(t) tends to infinity. The system is then not BIBO
stable.

Lyapunov stability. According to the internal Lya-
punov stability, the states of a system will remain
bounded all the time, for any finite initial conditions.
Let the state equation of a system be

x′(t) =
(

2 0
0 −1

)
x(t).

The solution of the system is

x(t) =
(

x1(0)e2t, x2(0)e−t

)
For x(0) = (0, 2), we obtain a bounded solution
x(t) = (0, 2e−t) for all t. However, we get x(t) =
(e2t, 2e−t) for other initial conditions x(t) = (1, 0).
The system is then Lyapunov unstable 67.

Root locus criterion. Let the general gain of a
discrete-time system be

H(z) =
C(z)
R(z)

.

The zeros and poles of the system simultaneously sat-
isfy the two equations C(z) = 0 and R(z) = 0. The
TF may take the form

H(z) = H0

∏Z
i=1(z − zi)∏P

i=1(z − pi)mi
,

6Since the eigenvalues s1 = 2, s2 = −1 of the state ma-
trix have a real part in right-half s-plane, the system is Lyapunov
unstable.

7BIBO stability and Lyapunov stability are related, since the
system’s poles are a subset of its eigenvalues: for a continuous-
time system to be stable, its poles must be in the left-half plane
(LHP), as well as its eigenvalues. Let a numerical state-space
system be

x′(t) =

„
0 1
2 −1

«
x(t) +

„
0
1

«
u(t),

y(t) =
`
−1 1

´
x(t).

Since the corresponding TF is H(s) = 1
s+2

, the unique real pole
is negative and the system is BIBO stable. However, the same
system is Lyapunov unstable, since the eigenvalues of the state
matrix are s1 = 1, s2 = −2, with one value in the RHP.

where Z is number of zeros, P the number of poles
with multiplicity mi. In linear form, we may write

N(z) + K.M(z) = 0, K ∈ (−∞,∞).

Nyquist stability criterion. The Nyquist stability
criterion is based on the contour of the frequency re-
sponse function. It combines the two types of Bode
plots, the magnitude and the phase plots. The stability
character of a system is deduced without computing
the poles of the TF. The stability of a closed-loop sys-
tem is deduced from the open-loop system’s Nyquist
plot. The negative closed-loop system will be stable
if the contour does not encircle the point (−1 + j0)
in the s-plane. Let F (s) be the open-loop TF, accord-
ing to the Cauchy principle, the number of clockwise
encirclements of the origin must be the difference be-
tween the number of zeros and the number of poles
in the RHP. If a given Nyquist contour Γs encircles
Z zeros and P poles, the resultant contour ΓF (s) en-
circles (clockwise) the point (−1 + j0) Z − P times.
For a sysstem to be stable, we must have Z = 0 (i.e.
no closed loop poles in the RHP). Hence, the number
of clockwise encirclements about (−1 + j0) must be
equal to P .

2 Circuit Analysis of Environmental
Pollution Systems

2.1 Green Solow-Swan Model

The green Solow-Swan model extends the reference
one-sector model of economic growth [6, 12], by
incorporating elements of environmental economics:
the flow of pollution emissions and pollution concen-
tration in stocks, the technological progress in pollu-
tion abatement. The model generates an EKC (En-
vironmental Kuznets Curve) relationship between the
pollution emissions and income per capita, and the
pollution concentration and income per capita [3, 5].
The model consists of two blocks, one is the Solow-
Swan growth model with environmental aspects, the
other one is for environmental economics. The aug-
mented model with exogenous technological progress
in production and pollution abatement leads to a per-
manent growth with improved environmental quality.

A two blocks system. In the economic block of the
model, a single good is used either for consumption
or investment and we have a perfect competition. The
savings rate is fixed, goods are produced according
to a constant returns to scale strictly concave pro-
duction function. The technological progress is labor

Development, Energy, Environment, Economics

ISBN: 978-960-474-253-0 136



augmenting. Capital stock accumulates by means of
savings and depreciates at a given rate. The popula-
tion growth is constant 8. We obtain the first compact
equation in intensive units for this block 9

k′(t) = (1− θ)sk(t)α(δ + g + n)k(t), (2)

where k denotes the capital stock per capita, θ abate-
ment effort, s the fixed savings rate, δ the depreciation
rate, g the exogenous labor-augmenting technological
progress in goods, and n the constant growth rate of
population. In the second block of the model, pollu-
tion is a joint product of output [5]. The emitted pollu-
tion is equal to the produced pollution less the abated
pollution. Every unit of production activity generates
several units of pollution and abatement is assumed to
be a constant returns to scale activity. The stock of
pollution varies with the emissions less a natural re-
generation of the pollution stock. We obtain the sec-
ond compact equation in intensive units for this block
10

x′(t) = a(θ)Ω(t)k(t)α−(η+g+n)x(t), η > 0, (3)

where a(.) denotes the impact of abatement on pol-
lution reduction, η the speed of natural regeneration.
According to the function a(θ) = (1 − θ)ε, ε > 1,

8Ferrara and Guerrini (2009) extend the Solow-Swan model
with a logistic population growth, in Recent Advances in Math-
ematics and Computers in Business and Economics, WSEAS,
Prague, March 23-25, pp. 17-20.

9Assuming a Cobb-Douglas production function

Y (t) =
`
B(t)L(t)

´1−α
K(t)α, α ∈ (0, 1),

where Y is the aggregate output, L the labor, K the physical cap-
ital stock. To be expressed in intensive units, all the variables are
divided by

`
B(t)L(t)

´
. The production function then takes the

simplified form y(t) = k(t)α. The same kind of transformation
is applied to the basic accumulation equation

K′(t) = (1− θ)sY (t)− δK(t),

where θ denotes the proportion of production activity dedicated
to abatement. Equation (2) is then obtained after simple algebraic
manipulations.

10The stock of pollution is related to the flow of emissions and
to the natural regeneration by

X ′(t) = E(t)− ηX(t),

where E denotes the flow of emissions and X the stock of pollu-
tion. The emitted pollution at time t is

E = −ΩA(Y, Y A) = ΩY

„
1−A

`
1,

Y A

Y

´«
= ΩY a(θ),

where a level A of abatement will remove ΩA units of pollution.
To be expressed in intensive units, all the variables are divided by
(BL, s.a. with x = X/(BL). Thereafter, equation (3) is obtained
by elementary algebraic manipulations.

abatement is supposed to have a positive (a′(θ) > 0)
but diminishing marginal impact (a′′(θ) < 0) on pol-
lution reduction. We also assume an exogenous tech-
nological progress in abatement, whose effect is to
diminish the pollution Ω(t) at rate gA > 0. Since,
we have Ω′(t)/Ω(t) = −gA, we deduce Ω(t) =
Ω(0)e−gAt. The green Solow-Swan model is the sys-
tem of non-linear FOCs (skipping the time arguments
of k and x)

k′ = (1− θ)skα − (δ + g + n)k, (4)

x′ = (1− θ)ε

(
Ω(0)e−gAt

)
kα − (η + g + n)x. (5)

System dynamics. The solution of the system (4-
5) is expressed via Hypergeometric functions. The
Bernouilli non-linear ODE equation (4) is solved
firstly, by using a substitution of function 11. Taking
z(t) = k(t)1−α with z′(t) = (1−α)k(t)−αk′(t) , we
obtain the linear ODE

z′(t)+(1−α)(δ+g+n)z(t) = (1−α)(1−θ)s. (6)

Given the initial condition k(0) = k0, the solution of
equation (6) is

k(t) =

((
k1−α

0 − (1− θ)s
δ + g + n

)
e−(1−α)(δ+g+n)t+

(1− θ)s
(δ + g + n)

) 1
1−α

.

Inserting the solution for k(t) into equation (5), we
get a linear ODE of the form 12

x′(t) + (δ + g + n)x(t) = ϕ(t).
11The general form of the Bernouilli ODE is

y′ + P (x)y = Q(x)yn, n 6= 0 and n 6= 1.

Substituting z = y1−n implies y = z
1

1−n with y′ = 1
1−n

z
n

1−n z′

and dividing both sides of the equation by z
n

1−n 6= 0, will change
the original to

1

1− n
z′ + P (x)z = Q(x).

12To solve an ODE of the form

y′ + Py = Q(x),

where P is a constant, we use the integrating factor (Giordano &
Weir (1991)[7]). The procedure is: first calculate the integrating
factor µ(x) = e

R
Pdx = ePx, then multiply the right side of the

original by µ(x) and integrate
R

µ(x)Q(x)dx + C and write the
general solution µ(x)y(x) =

R
µ(x)Q(x)dx + C or

y(x) = e−Px

Z
ePxQ(x)dx + Ce−Px.
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Figure 3: Block-diagram of the green Solow-Swan
model

The heavy form for ϕ(t) introduces hypergeometric
functions in the solution. Hypergeometric function
2F1 is represented by the series expansion 13 [2]

2F1(z; a, b, c) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a + k)Γ(b + k)
Γ(c + k)

zk

k!
,

where the Euler Gamma function satisfies

Γ(n) =
∫ ∞

0

tn−1e−tdt.

The block-diagram of the model is shown in Figure 3
with time as input and two outputs, the stock of pollu-
tion and the capital stock. The corresponding discrete-
time system is

kt+1 = kt + (1− θ)σkα
t − (δ + g + n)kt,

xt+1 = xt + (1− θ)ε(1− gA)tkα
t − (η + g + n)xt.

The simulation with a ramp function as input shows
a typical humped curve (Figure 4).

3 Circuit Analysis of Fishery Envi-
ronmental Systems

3.1 Fisheries Dynamics

Open-access fishery model. The open-access fish-
ery model [10] consists in two dynamic equations:

13The special hypergeometric function 2F1 (see Nikiforov &
Uvarov (1988)[9]) is a solution of the differential equation

z(1− z)y′′ + (c− (a + b + 1)z)y′ − aby = 0.

It is also the integral

Γ(c)

Γ(b)Γ(c−b)

×
Z 1

0

tb−1(1− t)c−b−1(1− tz)−adt.

Figure 4: Simulation of the discrete-time green
Solow-Swan model

one equation represents the growth rate of the fish re-
source, the other equation describes the responsive-
ness of the industry size to the profitability of the in-
dustry. The open-access assumption means the accep-
tance of the main characteristics of the perfect com-
petition model: a large number of fishing firms and
no barrier to the entry into and to exit from the fish-
ery industry [10]. As a main consequence, the fishing
firms cannot influence the market price, taken as given
(exogenous). In compact form, the two-dimensional
nonlinear system of ODEs is

S′(t) = g

(
1− S(t)

Smax

)
S(t)− eQ(t)S(t), (7)

Q′(t) = δ

(
ePQ(t)S(t)− wQ(t)

)
, (8)

where the variables are the stock of fish S and the ef-
fort Q. The parameters are e the catch fishing coef-
ficient, g > 0 the potential biomass growth, P the
market price, Smax the resource carrying capacity, w
the unit cost of harvesting effort and δ > 0 the re-
sponsiveness intensity of industry size to the prof-
itability. Equation (7) describes the net growth of
the fish stock, which is a biological logistic (density-
dependent) function 14 less a simple harvesting func-
tion 15. Equation (8) describes the fishing effort dy-
namics 16

14The alternative Gompertz growth function for biological evo-
lution is

f(S) = g

„
ln

Smax

S(t)

«
S(t).

15According to the harvesting function, the harvested quantity
H per unit effort Q is a multiple e of the stock size S. Then
we get the second member of equation (7), from the equivalence
H
Q

= eS ⇔ H = eQS.
16To find equation (8), we start from the assumption that ef-

forts will be incited by the profitability of the industry, according
to Q′(t) = δNB, where NB denotes the net profit: effort will
continue as long as fishing is profitable, and will cease when prof-
its tend to be negative. The net profit is the difference between the
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Steady state equilibrium. The steady-state equilib-
rium points are obtained by solving simultaneously
the system S′(t) = 0 and Q′(t) = 0. We get the
three equilibrium points: (0, 0), (Smax, 0) and(

S̄ =
w

eP
, Q̄ =

g(ePSmax − w)
e2PSmax

)
.

Linearizing equations (7-8) and evaluating the equa-
tions at the third steady-state equilibrium point, we
have the matrix equation for the system(

S′(t)
Q′(t)

)
=
(

− gw
ePSmax

−w
P

gδ
(
P − w

eSmax

)
0

)(
S(t)− S̄
Q(t)− Q̄

)
Trajectories are converging in the neighborhood of the
equilibrium point (.5, 8.3) for which the parameter
values are taken from [10]

e = .009, g = .15, P = 200, Smax = 1, w = .9, δ = .4

The numerical matrix of the system is

A =
(
−.075 −.0045

6 0

)
.

Since the roots of the characteristic equation |A −
sI| = 0, valued at this equilibrium point, are com-
plex with a negative real part s = −.0375± .16j, the
equilibrium is proved to be a locally asymptotically
stable focus.

Block-diagram approach. A block-diagram (Fig-
ure 5) is deduced from the discrete version of the non-
linear model (equations (7-8)). We have the system

Sk+1 = Sk + g

(
1− Sk

Smax

)
Sk − eQkSk,

Qk+1 = Qk + δ(PeSk − w)Qk.

Three types of input signals are tested in the simula-
tions of Figure 6: a 20 periods delayed impulse signal,
a unit step signal and a unit white noise which super-
posed to the initial market price level at 200.

3.2 Fisheries Control

The maximization problem. The maximization
problem of the fishery industry [11] is to maximize
the total discounted profits over the time period [0, T ]
subject to the biological growth of the fish resource.

total revenue from the sales PH(t)and a linear total cost wQ(t).
Replacing these elements into the equation for Q′(t) yields equa-
tion (8).

Figure 5: Block-diagram of the fishery open-access
model

Figure 6: Simulation output of the fishery open-access
model

Development, Energy, Environment, Economics

ISBN: 978-960-474-253-0 139



The discounted profit at time t may be written (skip-
ping the time argument) e−ρtV (S, Q, t) where e−ρt

denotes the discount factor, ρ the discount rate, Q the
harvesting effort and S the stock of fish at time t. Let
the harvesting function be h(S, Q), a function of stock
and effort. The profits V

(
S, Q, t) are simply the total

revenue from selling the fish P.h(S, Q) less the total
cost wQ. For this problem, the harvesting effort Q
will be the control variables, and S the state variable.
The optimal control problem of the fishery industry is

maximizeQ(t)∫ T

0

e−ρt

(
P.h
(
S(t), Q(t)

)
− wQ(t)

)
dt + F (ST )

subject to
S′(t) = f

(
S(t)

)
− h
(
S(t), Q(t)

)
,

S(0) = 0, S(T ) = ST .

The Hamiltonian for this problem is

H
(
S(t), Q(t), π(t), t

)
=

e−ρt

(
P.h
(
S(t), Q(t)

)
− wQ(t)

)
+

π(t)
(

f
(
S(t)

)
− h
(
S(t), Q(t)

))
,

where the π’s denote the costate variables, which are
the shadow price or price of the fish resource. The
necessary FOCs are (skipping the time arguments)

∂H
∂Q

= e−ρt

(
P − ∂h

∂Q
− w

)
− π

∂h

∂Q
= 0,

π′(t) = −∂H
∂S

= −
(

e−ρtP
∂H
∂S

+ πf ′(S)− π
∂H
∂S

)
,

S′(t) =
∂H
∂π

= f(S)− h
(
S, Q),

S(0) = 0, π(T ) =
∂F

∂ST
.

Let define µ(t) = eρtπ(t), we get π′(t) = e−ρtµ′(t)−
ρe−ρtµ(t). The necessary FOCs are then transformed
to

(P − µ)
∂H
∂Q

= w, (9)

µ′ =
(
ρ− f ′(S)

)
µ− (P − µ)

∂H
∂S

, (10)

S′ = f(S)− h
(
S, Q)

)
, (11)

Equation (9) is the maximum principle condition,
equation (10) the portfolio balance condition whose
interpretation states [11] a comparison between a net
advantage obtained from selling the fish (the first

term) and the net revenue of holding the fish (sec-
ond term). Equation (11) is the dynamic constraint
of the control problem. The maximum principle indi-
cates that the current value Hamiltonian is maximized
if the marginal net revenue from harvesting efforts
equals the marginal cost for such efforts (see Shone
[11]: 658-661, for further discussion). Suppose that
the functional for the harvesting function and the bi-
ological form take the forms (skipping the time argu-
ments)

h(Q) = eQε, f(S) = g
(
1− S

Smax

)
S.

The necessary FOCs are

eε(P − µ)Qε−1 = w, (12)

µ′(t) = µ

(
ρ−

(
g − 2gS

Smax

))
, (13)

S′(t) = g

(
1− S

Smax

)
S − eQε. (14)

Phase-diagram analysis in the state-costate plane
(S,µ). Eliminating Q from the three FOCs (equa-
tions (12-14)) by using the condition (12), we obtain
the pair of differential equations

S′(t) = g
(
1− S(t)

Smax

)
S(t)− e

(
eε
(
P − µ(t)

)
w

) ε
1−ε

, (15)

µ′(t) =
(

ρ− g + 2g
S(t)
Smax

)
µ(t). (16)

The steady-state equilibrium point is obtained by solv-
ing simultaneously S′(t) = 0 and µ′(t) = 0. We get

S̄ =
(g − ρ)Smax

2g
, µ̄ = P−

w 4
ε−1

ε ×
(

Smax(g2−ρ2)
e g

) 1−ε
ε

e ε
.

The characterization of the steady-state point is stud-
ied locally by linearizing equations (15-16) at this
point. We have the matrix equation S′(t)

µ′(t)

 = A

 S(t)− S̄

µ(t)− µ̄

 ,

where

A =

 g
(
1− 2S(t)

Smax

) e ε×
(

e ε(P−µ(t))
w

) ε
1−ε

P−P ε−µ+ε µ(t)

2g µ(t)
Smax

g
( 2S(t)

Smax
− 1
)

+ ρ

 .
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Taking the parameter values [11]

e = 5, g = .2, P = 10, Smax = 100, w = 8, ε = .5, ρ = .1,

the valued matrix at equilibrium is(
.1 1.5625

.0304 0

)
.

The characteristics of the steady-state equilibrium are
given by the eigenvalues and eigenvectors of the val-
ued matrix. Since the eigenvalues are real roots of
opposite signs with s1 = .273 and s2 = −.1736,
the equilibrium point is a saddle point, depicted
in Figure 7. The eigenvectors (.9939, .1104) and
(−.9850, .1725) allow for the determination of the
saddle paths, either a stable or an unstable arm.

Figure 7: Trajectories of the control fishery model in
the (S,µ)-plane and (S,Q)-plane

Phase-diagram analysis in the state-control plane
(S,Q). A similar approach shows a saddle point
equilibrium (see Figure 7).

References:

[1] A. Antoniou. Digital Filters: Analysis, De-
sign, and Applications. McGraw-Hill, Inc., New
York–London–Tokyo, 1993.

[2] M. Bender and S.A. Orszag. Advanced Math-
ematical Methods for Scientists and Engineers.
Mathematics Series. McGraw-Hill International
Edition, Auckland– London– Tokyo, 1978.

[3] W.A. Brock and M.S. Taylor. The green solow
model. Working Paper Series 10557, 2004.

[4] P.D. Cha and J.I. Molinder. Fundamentals of
Signals and Systems: A Building Block Ap-
proach. Cambridge University Press, Cam-
bridge, UK, 2006.

[5] B.R. Copeland and M.S. Taylor. Trade, growth,
and the environment. Journal of Economic Lit-
erature, 42:7–71, 2004.

[6] B.S. Ferguson and G.C. Lim. Introduction to Dy-
namic Economic Models. Manchester University
Press, Manchester–New York, 1998.

[7] F.R. Giordano and M.D. Weir. Differential
Equations: A Modeling Approach. Addison-
Wesley Publishing Company, Reading, Mass.–
Menlo Park, Cal.–New York, 1991.

[8] C.S. Lindquist. Adaptative & Digital Signal
Processing with Digital Filtering Applications,
volume 2 of International Series in Signal Pro-
cessing and Filtering. Steward & Sons, Miami,
1989.

[9] A.F. Nikiforov and V.B. Uvarov. Special Func-
tions of Mathematical Physics. Birkhäuser,
Basel– Boston, 1988.

[10] R. Perman, Y. Ma, J. McGilvray, and Common.
Natural Resource & Environment Economics.
Longman, Essex, 3rd edition, 2003.

[11] R. Shone. Economic Dynamics: Phase Dia-
grams and Their Economic Application - 2nd
edition. Cambridge University Press, Cam-
bridge, UK, 2002.

[12] R.M. Solow. Growth Theory, An Exposition. Ox-
ford University Press, Oxford, 2000.

Development, Energy, Environment, Economics

ISBN: 978-960-474-253-0 141




