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Abstract—This article introduces to the hierarchical nonconvex 

optimization techniques with multiple agents at multiple levels. 

In practice, many areas in engineering, economic policies, 

transportations and regional planning have already been 

concerned with such a decision-making process. The multilevel 

programming was defined in the mid-1970s. A particular 

emphasis is made on the equilibrium determination in the Nash-

Stackelberg static game, with one leader at the upper-level and 

multiple followers at the lower-level. Examples from the 

literature have been revisited by using the Wolfram/Mathematica 

software V.8.0.0.-10. 
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I.  INTRODUCTION TO BILEVEL PROGRAMMING 

A. Decision Making in Hierarchical Organizations  

Suppose an organization with two levels of hierarchy in 

decision making : the leader at the upper-level and the 

follower  at the lower-level (Bard [5], Cruz [13]). This may be  

the case of a private company, in which  the top management 

has overall economic objectives  and where specialized 

divisions have  productivity and marketing objectives (for 

engineering and economical  applications, see  Bard [5], 

Dempe [15, 16]). The decision process is such that the two 

levels proceed sequentially, in the sense that the leader may 

influence the decision of the follower. The follower observes 

the leader’s decision and  reacts optimally. 

This problem is similar to the static noncooperative two-

person game by Stackelberg (Pfähler [24], von Stackelberg 

[28]). The two players optimize their own payoff function by 

controlling their decision variables. Both players have a 

perfect information about the objectives and strategies of the 

opponent. The leader plays first, but must anticipate all the 

possible reactions of his opponent and the follower reacts 

optimally. 

B. Decision-Making Problem  

The formulation of this decision-making problem refers to a 

bilevel programming (BLP) problem, in which the constraint 

region is implicitly determined by another optimization 

problem. Let the decision variables controlled by the leader be 
nX x and the follower’s decision variables be 

mY y . A general form of the BLP may be written 

with no upper-level constraints, such as 

 

where  the outer and inner objective functions  are  

, : n mF f  and the inner  constraints 

: n m qg . All the functions are assumed to be 

continuous  and 
2C . Moreover, the sets X and  Y will place 

additional  restrictions on the variables such as bounds,  

nonnegativity,  or integrality. Under convexity and regularity 

conditions, using the Karush-Kuhn-Tucker (KKT) conditions 

for the second level problem, the BLP is reformulated as a 

single nonlinear optimization problem 
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Lagrangean  associated with the lower-level problem and u  

the multipliers. Different algorithms have been proposed to 

replace the complementarity slackness and Lagrangean 

constraints, by adding new variables and constraints, or using 

the branch and bound  (B&B) algorithm. 

C. Introductory Example 

Example 1. A linear BLP problem with two players is taken 

from Bard [5], to define the BLP constraint region S , the 



follower’s feasible set ( )S x , the rational reaction set 

( )RR x , and the projection ( )S X  of  S onto the leader’s 

decision space. The controlled variables by players are 

respectively x X    and y Y   . The 

numerical BLP example is shown in Fig.1. The BLP problem 

is  

 

 The polyhedron  S is the set 

  4, : , , ( , ) 0,iS x y x X y Y g x y i     . 

For fixed x X , the follower’s feasible region is the set 

 ( ) : 3 , 2 , 12 2 , 2 1.5S x y Y y x y x y x y x         

The follower’s reaction set is defined by the set 

 ˆ ˆ( ) arg min ( , ) : ( )RR x y f x y y S x   .The 

piecewise  inductible region  

  , : 0, ( )IR x y x y RR x    is the feasible set of the 

leader. The projection of  S onto the leader’s decision space is 

the set  ( ) : , ( , ) 0S X x X y Y x y    g . We deduce 

  ( ) 1, 4S X x  .  

 
Figure 1 Feasible region and global optimum 

 

The polyhedron S  shows the constraint region.  

Theorem 1.  The inductible region IR is equivalently a 

piecewise linear equality constraint comprised of supporting 

hyperplanes of S . Proof. see Bard [5], p. 199. 

Theorem 2. The solution  * *,x y of a linear BLP occurs at a 

vertex of  S . Proof. see Bard [5], p. 200.  

The payoff matrix in TABLE 1 is used to search for the 

optimum. For feasible points, the payoffs are  ,f F  and   

for non feasible points. For extreme points on the IR, the 

payoffs are highlighted. 

 
TABLE 1 PAYOFF MATRIX OF EXAMPLE 1 

 Leader (x) min  
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 1 2 4 6 

1  (2,-7)   2  
 

2 (1,-2) (2,-6) (4,-14)  
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1  

3   (4,-13) (6,-21) 4  
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The optima occur at extreme points of inductible region. The 

global optimal solution is achieved at  C (4,4) with 

   * *, 4, 12f F    There is no Pareto optimal solution. A 

local optimum is at A(1,2). 

II. MULTIAGENT - MULTILEVEL PROGRAMMING 

A. Multilevel Multiagent Decision Making System 

The structure of an N-agent L-level programming problem 
is shown in Fig. 2. This presentation is inspired from  Yang and 
Bialas [31]. The hierarchical decision system consists of L 

levels. At each level 1,...,k L , the number of agents (or 

divisions)  is 
kn . Agent i at level k is denoted by 

k k

i D L and all other agents at the same level will be 
k

iD . 

Agent 
k

iD  is controlling 
ki

mk k

i iX x with 
ikm decision 

variables. The decision variables for level k  are 

 1 1
,..., k

k

nk k k k k

n ii
X X


  x x x . The total number of 

decision variables in the system is 
1 1

k

i

L n

kk i
N m

 
  .The 

system is a nested collection of Nash equilibrium problems: 
within  each level, agents play an  n  person nonzero-sum 

game and between levels, the decision process is similar to an 
n  person Stackelberg game (Yang and Bialas [31]). Every 

agent has a perfect information. They are perfectly informed 
about the decisions at upper levels, but not at their levels or 
below. The agents of one level will also influence the other 
agents at lower levels, via their objective functions and the sets 
of feasible decisions.  



 

B. Nash-Stackelberg Equilibrium Solution 

Let the objective functions of agent 
k

iD be 

:k N

if for 1,..., ki n  and 1,...,k L . 

Definition 1 (Nash equilibrium responses). The Nash 

equilibrium responses at level k of 1 ,...,
k

k k

nf f over the 

compact set S , for each 1,..., 1k L  , is defined as.  
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Assumption 1. The parametric problem for the 
kn agents  

k k

i D L  has no multiple equilibrium solution. That is, for 

fixed values  1 1ˆ ˆ ˆ, , ,L L k 
x x x , the set  k S has at most 

one element (Yang and Bialas [31]). 

Definition 2 (Equilibrium solution). Let the level k feasible 

set be  1 1k k kS S    for any given  

 1 1ˆ ˆ ˆ, , ,L L k 
x x x . An equilibrium solution 

kSx is   

 1 1 1, , , , , , ,k k k k L

i i

 

x x x x x x x  

Definition 3 (Stackelberg feasibility). If the equilibrium 
solution x also satisfies the rational responses of lower levels 

1 1, ,kL L , then it is Stackelberg feasible. 

The programming problem to be solved simultaneously by 

every 
k k

i D L to get a Nash-Stackelberg solution is 
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The complete explicit form of the program is (Yang and 
Bialas [31]) 

 

C. Finding Nash-Stackelberg Solutions 

Several algorithms have been proposed in the literature for 
solving linear and nonlinear BLPs. (Campelo and Scheimberg 
[10]). These algorithms are relevant to three  main approaches: 
the extreme vertex exploration in the linear case, the 
reformulation of the original problem, the descent methods. 
Using heuristic algorithms such as simulated annealing, genetic 
algorithms (Deb [14], Liu [21], Wang et al. [29]) is a recent 
tendency. Some of the methods are oriented to local 
optimization techniques such as the penalty and barrier 
function method, others are global optimization techniques. 
Optimization principles are from Antoniou and Lu [3], Bazaraa 
et al. [6], Bertzekas [7], Gill et al. [20]. Bilevel optimization is 
from Bard [5], Colson et al. [12], Dempe [15, 16], Floudas 
[18]. 

 Extreme-point approach. According to Theorem 2. , 
some form of vertex enumeration may be employed for 
linear BLPs. The algorithms are based on the vertex 
enumeration and evaluation of extreme points of the 
constraint region. The Kth best method (Bialas and 
Karwan [8], Candler and Townsley [11], Shi et al. [25, 
26] considers bases of the relaxed problem 
(complementarity term omitted), sorted in increasing 
order of the upper level objective function values. . 

Figure 2 Multilevel decision making system 



 Reformulation techniques. Suppose that the lower-
level problem is convex and regular. Then, the original 
problem is transformed into a single optimization 
problem as in section I.B, by employing the KKT 
conditions of the lower-level problem (Lu et al. [22, 
23]. However, the nonconvexities, that occur in the 
linear complementarity slackness constraint, require 
some further transformations, such as: adding new 
variables and constraints and solving a mixed integer 
programming technique (Fortuny-Amat and McCarl 
[19]) or using a B&B enumeration technique (Bard and 
Falk [4]). Also, by using the KKT conditions for the 
lower-level problem, the parametric complementary 
pivot (PCP) has been proposed: in Bialas et al. [9] it is 
updating a parameter  , which bounds the upper-level 

objective function value. The lower-level problem may 
also be replaced by a penalized problem. Penalty 
methods in Aiyoshi and Shimizu [1,2], White and 
Amandalingam [30] introduce the duality gap of the 
follower’s problem into the leader’s problem.  

 Descent methods. Assume that the optimal solution at 
lower-level is unique, and define an implicit function  

y (the decision variables of the leader) of x  (the 

decision variables of the follower). Given a feasible 
point, an attempt is made to find a feasible direction 
along which the upper-level objective decreases. The 
main issue is the availability of the gradient at the 
feasible point (Falk and Liu [17], Shi et al. [25, 26], 
Vicente et al.[27].). 

III. NASH-STACKELBERG GAME 

A. Two Level Decision System 

Example 2. This simple application is taken from Yang 
and Bialas [31]. The hierarchical system  consists of two levels, 
with one leader at level 1 and two followers at level 2. The 
system is shown in Fig. 3. The vector of decision variables is 

 1 2 2

1 1 2, ,x x xx . The leader 
1

1D controls 
1

1x and the 

followers 
2 2

1 2,D D  control 
2 2

1 2,x x respectively. The 

objective functions of the players 
1 2 2 3

1 1 2, , :f f f are 

all linear and the nonnegative decision variables must satisfy a 

set of five linear constraints 
3 5:g . 

 

Figure 3 Decision making system for Example 2 

B. Linear Bilevel Programming 

The feasible region for this problem is shown in Fig. 4. 

C. Nash-Stackelberg Equilibrium 

The best responses 
2

1BR and 
2

2BR of the two followers are the 

heavy  lines [A-E-F-G-C] and [D-A-B] respectively in Fig. 4. 

These lines are deduced from  TABLE 2. The best responses of 

agent 
2

1D for each possible choice of 
2

2x by 
2

2D such that 

 2

2 0,0.5,1,1.5,2x  are calculated as follows. If . 

2

2D chooses 
2

2 0x  , the response of 
2

1D  is  
2

1 1x  (this is 

the only possibility) and the subsequent response of the leader 
1

1D to these choices    2 2

1 2, 1,0x x   is 
1

1 0x  . If 

2

2D chooses 
2

2 1x  (see highlighted numbers in TABLE 2), 

the response of 
2

1D  is  multiple with  2

1 0,0.5, ,2x  1.5 . 

The corresponding payoffs for 
2

1D  being 

 2

1 0.6,0.75, ,0.8f   1.45 , this player  will retain  the 

maximum and then chooses 
2*

1 1.5x  . The subsequent 

response of the leader 
1

1D to these choices 

   2 2

1 2, 1.5,1x x   is 
1

1 0.5x  . The calculation goes on by 

using the same rules. 
TABLE 2 DATA FOR EXAMPLE 2 

Point Coordinates Function values 
1

1x  
2

1x  
2

2x  
1

1f  
2

1f  
2

2f  

A 0 1 0 0.8 0.7 2 

B 0 2 1 2.8 0.8 2.5 

C 0 1 2 3.2 -0.5 -1 

D 0 0 1 1.2 -0.6 -1.5 

E 0.5 1 0.5 1.9 1.4 0.25 



F 0.5 1.5 1 2.9 1.45 0.5 

G 0.5 1 1.5 3.1 0.8 -1.25 

H 0.5 0.5 1 2.1 0.75 -1.5 

The point  2 2

1 2A BR BR  .  Is a Nash equilibrium. Since 

it is an element of 
2S , it is also a Stackelberg solution. 

 
Figure 4 Nash-Stackelberg equilibrium for Example 2 

This example is solved by using a 6 steps enumeration 

procedure in Yang and Bialas  [31]. 
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