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Abstract. Dynamic differential games have been widely applied to the tim-
ing of product and device innovations. Uncertainty is also inherent in the
process of technological innovation: R&D expenditures will be engaged in an
unforeseeable environment and possibly lead to innovations after a random
time interval. Reinganum [Reinganum, 1982] enumerates such uncertainties
and risks: feasibility, delays in the process, imitation by rivals. Uncer-
tainties generally affect the fundamentals of the standard differential game
problem: discounted profit functional, differential state equations of the sys-
tem, initial states. Two ways of resolution may be taken [Dockner, 2000]:
firstly, stochastic differential games with Wiener process and secondly dif-
ferential games with deterministic stages between random jumps (Poisson
driven probabilities) of the modes. The player will then maximize the ex-
pected flows of his discounted profits subject to the stochastic state con-
straints of the system. In this context, the state evolution is described by
a stochastic differential equation SDE (the Ito equation or the Kolmogorov
forward equation KFE). According to the Dasguspta and Stiglitz’s model
[Dasguspta, 1980], R&D efforts exert direct and induced influences (through
accumulated knowledge) about the chances of success of innovations. The
incentive to innovate and the R&D competition can be supplemented by a
competition around a patent. This presentation is focused on such essential
economic and managerial problems (R&D investments by firms, innovation
process , and patent protection) with uncertainties using stochastic differen-
tial games [Friedman, 2004], [Yeung, 2006], [Kythe, 2003], modeling with It
SDEs [Allen, 2007] and queueing models [Gross, 1998]. The computations
are carried out using the software Mathematica 5.1 and other specialized
packages [Wolfram, 2003], [Kythe, 2003].

1 Université de Haute Alsace, Campus de la Fonderie, rue de la Fonderie, 68093 Mulhouse Cedex
France.
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1. Uncertainties and basic stochastic processes

Definition 1. (stochastic process). Given a filtered probability space (Ω,F ,P) with
filtration 2 {Tt, t ≥ 0} satisfying the conditions of right continuity and completion,
a stochastic process is a collection of random variables {xt}t∈T defined on (Ω,F ,P)
with values in Rn. The process may be represented by the function [Øksendal, 2003]

(t, ω) �→ x(t, ω) : T × Ω �→ Rn.

We will thus have the number of random events that occur in [0,t].

Definition 2. (random variable, path). For each t ∈ T fixed, the state of the
process is given. We then have a random variable (RV)defined by

ω �→ xt(ω), ω ∈ Ω.

For each experiment ω ∈ Ω, we have a path of xt defined by

t �→ xt(ω), t ∈ T.

Definition 3. (stationary process). A process xt is stationary if
xt1 , . . . , xtn and xt1+s , . . . , xtn+s have the same joint distribution for all n and s.3

1.1. Brownian motion

Definition 4 (one-dimensional Brownian motion, or Wiener process [Friedman,
2004]. A stochastic process {zt}t≥0, is a Brownian motion satisfying the conditions:
(i) z0 = 0, (ii) the process has stationary independent increments ztk − ztk−1(1 ≤
k ≤ n), and (iii) if 0 ≤ s < t, zt − zs is normally distributed with E[zt − zs] =
(t− s)µ and E[{zt − zs}2] = (t− s)σ2, where µ is the drift and σ2 – the variance.

According to the first condition any zt that starts at z0 can be redefined as zt−z0.
The second condition tells that the random increment ztn+1 − ztn is independent of
the previous one ztn−1−ztn−2 , for all n. Increments are stationary when zt−zt−s has
the same distribution for any t and s constants. With the third condition, the RV has

2 In algebra, a filtration of a group is ordinarily a sequence Gn(n ∈ N) of subgroups such that
Gn+1 ⊆ Gn. A filtration is often used to represent the change of the sets of measurable events in
terms of information quantity. A filtered σ-algebra is an increasing sequence of Borel σ-algebras
{Ft}t≥0 with Ft ⊆ F for each t and t1 ≤ t2 ⇒ Ft1 ⊆ Ft2 .

3 A weaker concept states that the first two moments are the same for all t and that the covariance
between xt1 and xt2 depends on the time interval t1 − t2 [Ross, 1996].
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the following probability density function (PDF) f(z) = (
√

2πσ2t)−1 exp[− 1
2 ( z−µσ )2].

Since the variance linearly increases in time, the Wiener process is non stationary.
Stochastic differential equations (SDEs) frequently introduce uncertainty through a
simple Brownian motion and are defined by

dxt = µdt+ σdzt,

where the constant µ is the drift rate, σ2 the variance rate of xt (σ denotes the
diffusion rate), dt a short time interval, and dzt the increment of the Brownian mo-
tion. The Figure 1 (a) shows three different realizations B̃1, B̃2, B̃3 of the Brownian
process. The deterministic part is clearly governed by the ordinary differential equa-
tion (ODE) ẏt = µ which solution is linear in time.4

Fig. 1: Standard Brownian motions

Example (total factor productivity). Let us consider a differential representation
for the production technology [Wälde, 2006]. With an AK technology, we have Yt =
F (At,K) = AtK, where Yt and At denote continuous functions of time t (a more
convenient notation), where A states for the total factor productivity (TFP), Y, the

4 The calculations use the packages Statistics‘ ContinuousDistributions, StochasticEquations‘
EulerSimulate of Mathematica 5.1 and Itovns3 [Kendall, 1993].The primitive of EulerSimulate is
EulerSimulate [drift, diffusion, {x, x0}, {duration, nsteps}]. It returns a list of simulated values
for the corresponding Ito process. More generally , a system of Ito processes can also be simulated
by specifying the drift vector and the matrix of diffusion. The Mathematica package ItosLemma
implements Ito’s lemma for stochastic multidimensional calculus, computing stochastic derivatives
and Ito–Taylor series. The primitive Itomake[x[t], µ, σ], where µ is the drift and σ the diffusion,
stores the rule x[t + dt] = x[t] + µdt + σdB1.
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output and K, a fixed amount of global productive factors. Suppose TFP grows at
a deterministic rate g with Ȧt = gAt ⇔ dAt = gAtdt. We have the differential
dF (At,K) = FAdAt + FKdK.

We easily deduce the growth of Yt as Ẏt = gKAt. The evolution in time is

Yt = gK

∫ t

1

Asds.

A more realistic situation consists in the introduction of the uncertainties that may
affect the TFP. Let suppose that At will be driven by a Brownian motion with drift
such as dAt = gdt + σdzt, where g and σ are constants. Solving the SDE, we have
At = A0 + gt+ σzt. The time evolution of Yt is given by

Yt = A0K + gKt+ σKzt.

In this example5, the evolution of the output consists of two parts: a deterministic
trend and a stochastic deviation component from the trend. However, since Yt may
be negative, we have to look for another specification.

A RV may also evolve according to a geometric Brownian, such as

dxt
xt

= µdt+ σdzt ⇔ dxt = µxtdt+ σxtdzt.

The Figure 1 (b) shows three different realizations b̃1, b̃2, b̃3 of such a geometric Brown-
ian process. The deterministic part is governed by the ODE Ẏt = aYt, which solution
is clearly exponential in time.

Definition 5. (one-dimensional Itô processes [Øksendal, 2003]). Let Bt be a
one-dimensional Brownian motion on the probability space (Ω,F ,P). A stochastic
Itô integral is a stochastic process xt of the form:

xt = x0 +
∫ t

0

us(ω)ds+
∫ t

0

vs(ω)dBs,

so that

P{
∫ t
0
vs(ω)2ds <∞ for all t ≥ 0} = 1

and P{
∫ t

0

|us(ω)|ds <∞ for all t ≥ 0} = 1.

5 Wälde [Wälde, 2006] also gives another specification where the drift rate is AK and the diffu-
sion rate σK. The solution takes the form

Yt = Y0 + AKt + σKzt.
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Theorem 1 (the one-dimensional Itô formula [Øksendal, 2003]). Let xt be an Itô
process given by dxt = udt + vdBt. Let a twice continuously differentiable function
g(t, x) ∈ C2([0,∞) × R) on [0,∞) × R. Then yt = g(t, xt) is again an Itô process,
and

dyt =
∂g

∂t
(t, xt)dt+

∂g

∂x
(t, xt)dxt +

1
2
∂2g

∂x2
(t, xt)(dxt)2,

where (dxt)2 = (dxt).(dxt) is calculated according to the multiplication rules

dt.dt = dt.dBt = dBtdt = 0, dBt.dBt = dt.

Proof.
See Øksendal [Øksendal, 2003], p.46 (with slightly different notations).

Example (Total factor productivity (continued) [Wälde, 2006]). Let TFP follow a
geometric 6 Brownian motion

dAt
At

= gdt+ σdzt,

where g and σ are constants. Hence, we have∫ t

0

dAs
As

= gt+ σzt, z0 = 0. (1)

To evaluate the integral on the LHS, the Itô formula is used for the logarithmic
function g(t, x) = lnx, x > 0. We have

dg(t, x) = gtdt+ gxdx+
1
2
gxx(dx)2,

where dx = gxdt+ σxdz. Since (dx)2 = g2x2(dt)2 + σ2x2(dz)2 + 2gσdtdz = σ2x2dt,
we deduce

dg(t, x) = gtdt+ gxdx+
1
2
gxxσ

2x2dt.

We then obtain

d lnAt =
1
At
dAt +

1
2
(− 1
A2
t

)(dAt)2 =

=
dAt
At

− 1
2A(t)2

σ2A2
tdt =

dAt
At

− 1
2
σ2dt.

Hence, dAt

At
= d lnAt + 1

2σ
2dt. The expression of the integral is then∫ t

0

dAs
As

= ln
At
A0

+
1
2
σ2t.

6 The process rather describes the rate of change of a RV, than the random variable itself.
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From (1), we then deduce the time evolution of the TFP: At = A0 exp[(g − 1
2σ

2)t+
+σzt].

1.2. Poisson Process

The occurrence of discrete events at times t0, t1, t2, . . . (e.g. innovations) are
often modeled as a Poisson process. For a Poisson process, the time intervals ∆t1 =
t1 − t0,∆t2 = t2 − t1, . . . between successive events are independent variables drawn
from an exponential distributed population. The parameterized PDF is given by
f(x;λ) = λe−λx for some positive constant λ. Suppose a system that starts in
state 0 at initial time t0. It will change to state 1 at some time t = T , where T is
drawn from an exponential distribution. The probability that the system will be in
state 1 at time t1 is given by the integral

P1(t1) =
∫ t1

0

λe−λtdt = 1− e−λt1 .

The probability of the system still being in state 0 is the complement P0(t1) = e−λt1 .
The absolute rate of change of being in state 1 is dP1

dt = λe−λt. We deduce an
exponential transition with rate λ such as

dP1

dt
= λP0. (2)

More generally, for any number of states, a system of differential equations such as
(2) will describe the probabilities of being in each state. Since the transition time
from the state Pn to Pn+1 is exponential for all n, a Poisson process will be deduced.
Schematically, it is illustrated by the chain of the Figure 2, where Pj is the probability

Fig. 2: Poisson process at constant rate

of the j th state when j events have occurred. The initial conditions are such that
P0(0) = 1, Pj(0) = 0 for all j > 0. We have to determine Pn(t). Since the transitions
are exponentially distributed, we have the system

dP0

dt
= −λP0,

dP1

dt
= λP0 − λP1, . . . ,

dPn
dt

= λPn−1 − λPn.

Given the initial condition P0(0) = 1, the solution of the first equation is P0(t) = e−λt.
Substituting this result into the second equation, we have the ODE

dP1

dt
+ λP1 = λe−λt.
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Solving the ODE, we obtain 7

P1(t) = (λt)e−λt.

Continuing by substitution, we have

P2(t) =
(λt)2

2!
e−λt, . . . , Pn(t) =

(λt)n

n!
e−λt.

In this simple counting Poisson process, the probability Pn(t) then expresses that
exactly n events have occurred at time t. The expected number of occurrences by
time t is

E[n, t] =
∞∑
n=0

nPn(t) = e−λt
∞∑
n=1

(λt)n

n!
= e−λt(λt)

∞∑
n=1

(λt)n−1

(n− 1)!
= λt.

Definition 6 (Poisson process). A stochastic process qt is a Poisson process with
arrival rate 8 λ if: (i) q0 = 0, (ii) the process has independent increments, and (iii)
the increments qτ − qt (or jumps) in any time interval τ − t is Poisson distributed
with mean λ(τ − t), say qτ − qt � Poi(λ(τ − t)).

The probability that the process increases n times between t and τ > t is given
by

P{qτ − qt = n} = e−λ(τ−t) (λ(τ − t))n
n!

, n = 0, 1, . . . .

The SDE of a standard Poisson process is

dxt = adt+ bdqt,

where the increment dqt is driven by

dqt =

{
0 w.p. 1− λdt,
1 w.p. λdt,

The Figure 3 illustrates two situations: in figure (a) jumps have the same amplitude,
in the second (b) jump amplitudes are random. If no jump occurs (dq = 0), the
variable will follow a linear growth xt = x0 +at.When a jump occurs, xt increases by
b. The Figure 3 (b) shows an extension of the Poisson process where the amplitude
of the jumps bt are governed by some distribution, such as bt � N (µ, σ2).

7 The solution of the generalized ODE (in usual notations) with variable parameters ẋ + a(t) =
b(t) is given by

x(t) = e−
� t
1

a(s)ds{C +

� t

1

e
� s
1

a(u)dub(s)ds},

where C is a constant of integration. The solution for the process is achieved by setting x ≡
P1, a(t) ≡ λ and b(t) = λe−λt.

8 A high arrival rate means that the process jumps more often.
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Fig. 3: Poisson processes with constant and random jump amplitude

Lemma 1 (Change of Variable Formula CVF). Let xt be a Poisson stochastic process
given by

dxt = a(t, xt, qt)dt+ b(t, xt, qt)dqt.

Let a twice continuously differentiable function F (t, x) ∈ C2([0,∞)×R) on [0,∞)×R,
the differential is

dF (t, xt) = (Ft + Fxa(.))dt+ {F (t, xt− + b(.))− F (t−, xt)}dqt,

where t− denotes a date that precedes a jump at time t.

Example (Total factor productivity (continued) [Wälde, 2006]). Let TFP follow
a geometric Poisson process

dAt
At

= gdt+ σdqt,

where g and σ are constants. Hence, applying the Itô’s lemma for Poisson processes,
we obtain the solution 9

At = A0 exp[gt+ (qt − q0) ln(1 + σ)].

The TFP will then follow a deterministic exponential trend and have a stochastic
deviation, given by (qt − q0) ln(1 + σ), σ ≥ 0.

9 The proof of lemma 1.9 is shown in appendix A. The detailed calculations for this example are
given in the same appendix.
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1.3. Queueing models

Queueing models are a typical application of exponential transitions and Poisson
processes. Some events occur at some constant rate λ and are treated at a constant
rate µ. Let us consider a M/M/1 queue, where the first M states for memoryless ar-
rivals (i.e. inter-arrivals times of occurring events are often modeled as exponentially
distributed variables), the second M is the same for departures and the 1 states a
single server. The chain may by represented schematically by the Figure 4.

Fig. 4: Queues with a single service M/M/1

The system of dynamic equations is:

dP0
dt = −λP0 + µP1,

dP1
dt = λP0 − λP1 − µP1 + µP2, . . . ,

dPn
dt

= λPn−1 − λPn − µPn + µPn+1.

The steady state probabilities, once the system has stabilized at the equilibrium, are
characterized by the probability that exactly n events occur and by the expected
number of presently waiting events10

Pn = (1 − λ

µ
)(
λ

µ
)n and E[n] =

∞∑
n=0

nPn =
λ/µ

1− λ/µ.

2. Stochastic control problem and differential games

There are two particular ways to introduce uncertainty in the differential games.
The first way is based on piecewise deterministic processes, where the system switches

10 In the steady state, the derivatives vanish and we deduce the geometric series

P1 =
λ

µ
P0, P1 = (

λ

µ
)2P0, . . . , Pn = (

λ

µ
)nP0, . . .

which converges only if the rate of arrivals λ is less than the rate µ of processing. Under this condition
we have

P0{1 + (
λ

µ
) + (

λ

µ
)2 + . . . + (

λ

µ
)n + . . .} = P0(1 − λ

µ
)−1 = 1.

The expression of Pn will then follow from P0 = 1 − (λ/µ).
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from one deterministic mode to another, at random jump times. The second way
consists of introducing continuous stochastic noise processes11.

2.1. Optimal control under uncertainty

The uncertainty may take the form of a Brownian motion (also Wiener process).
This process will generally influence the evolution of the state variable. This evolution
will be described by an SDE of the form [Dockner, 2000]:

dxt = f(t, xt, ut)dt+ σ(t, xt, ut)dwt, x0 given, (3)

where xt denotes the n-dimensional vector of the states and ut – an m-dimensional
vector of controls. A k -dimensional Wiener process wt is a continuous-time stochastic
process, such as w : [0, T )× Ξ �→ Rk, where Ξ denotes the set of points ξ of possible
realizations of the RV. The functions are such that f : Ω = {(t, x, u)|t ∈ [0, T ), x ∈
X,u ∈ U(t, x)} �→ Rn and σ : Ω �→ Rn×k12. A solution xt of the SDE (3) must
satisfy the following integral equation

xt =
∫ t

0

f(s, xs, us)ds+
∫ t

0

σ(s, xs, us)dws

for all ξ of w(s, ξ) in a set of probability 113 footnote Any solution to the SDE is a
stochastic process depending on the realizations of ξ ∈ Ξ. The correct notation is
rather x(t, ξ) than x(t) or xt, showing that the value of xt cannot be known, without
knowing the realization of ξ (see [Dockner, 2000], p.228)..

Lemma 2 (Ito’s lemma). Suppose that xt solves the SDE (3). Let G : [0, T )×X �→ R
be a function with continuous partial derivatives Gt, Gx, Gxx. The function g(t) =
G(t, xt) will satisfy the SDE:

dg(t) = {Gt(t, xt) +Gx(t, xt)f(t, xt, ut)+

+
1
2
tr[Gxx(t, xt)σ(t, xt, ut).σ(t, xt, ut)′]}dt+

+Gx(t, xt)σ(t, xt, ut)dwt.

11 Memoryless Poisson models of patent race are associated with Dasgupta and Stiglitz
[Dasguspta, 1980], Lee and Wilde [Lee, 1980], Loury [Loury, 1979], Reinganum [Reinganum, 2004],
[?]. The probability to innovate and to obtain a patent depends on the current R&D investment.
Reinganum [Reinganum, 1982] and Yeung and Petrosyan [Yeung, 2006] consider non cooperative
and cooperative games.

12 An entry σij of this n × k matrix evaluates the direct impact of the j th component of the
k -dimensional Wiener process on the evolution of the ith component of the n-dimensional state
vector.

13 The second integral is such as limδ→0
�L−1

l=1
σ(tl , xtl , utl){wtl+1 −w(tl

}, where 0 = t1 < t2 <
· · · < tL = t and δ = max{|tl+1 − tl|, 1 ≤ l ≤ L − 1}
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The stochastic control problem is given by

max Eu(.)[
∫ T

0

F (t, xt, ut))e−rt dt+ e−rTS(xT )],

s.t.
dxt = f(t, xt, ut)dt+ σ(t, xt, ut)dwt,

x0 given, ut ∈ U(t, xt).

(4)

The following optimality conditions are based on the Bellman equation (HJB).

Theorem 2 (Optimality conditions). Let a function be defined as V : [0, T )×X �→ R
with continuous partial derivatives Vt, Vx and Vxx. Assume that V satisfies the HJB
equation:

rV (t, xt)− Vt(t, xt) = max {F (t, xt, ut) + Vx(t, xt)f(t, xt, ut)

+
1
2
tr[Vxx(t, xt)σ(t, xt, ut).σ(t, xt, ut)′]|ut ∈ U(t, xt)}, (5)

for all (t, xt) ∈ [0, T )×X. Let Φ(t, xt) be the set of controls maximizing the RHS of
(5) and ut be a feasible control path with state trajectory xt s.t. ut ∈ Φ(t, xt) holds
a.s. for a.a. t ∈ [0, T ):
(i) if T <∞ and if the boundary condition V (T, x) = S(x) holds for all x ∈ X then
u(.) is an optimal control path;
(ii) if T=∞ and if either V is bounded and r > 0, or V is bounded below with
limt→∞ e−rtEu(.)V (t, xt) ≤ 0 holds, then u(.) is a catching up optimal control path.

Proof. See Dockner et al. [Dockner, 2000], p.229-30, Yeung and Petrosyan [Yeung, 2006],
p.16 with different notations.

2.2. Differential games with random process

Let us consider a N -players game. The control variable by the ith player is
denoted by uit at time t for i ∈ {1, 2, . . . , N}. The vector of controls by the opponents
of player i will be u−it = {u1

t , u
2
t , . . . , u

i−1
t , ui+1

t , . . . , uNt }. The controls are subject to
the constraints uit ∈ U i(t, xt, u−it ) ⊆ Rmi , where the xt ∈ X are the state variables
of the system. The state equation for the game will then be given (by omitting the
time index of arguments)

dxt = f(t, x, u1, . . . , uN)dt+ σ(t, x, u1, . . . , uN)dwt,

where wt is a k -dimensional Wiener process. The functions f and σ are both defined
on Ω = {(t, x, ui, u−i)|t ∈ [0, T ), x ∈ X, ui ∈ U i(t, x, u−i)} with values in Rn and
Rn×k respectively. The objective of each player is to maximize the expectation of his
discounted flow of payoffs

J i(ui(.)) = Eu(.){
∫ T

0

F i(t, xt, ui, u−i)e−ritdt+ e−ritSi(xT )|x0 given},
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where F i is a real-valued utility function defined on Ω, Si a real-valued scrap value
function defined on X , and ri the discount rate.

2.3. Piecewise deterministic control problem

Let us consider an autonomous problem defined over an unbounded time interval
[0,∞). The evolution of the system may be deterministic, except at certain jump
times given by the finite set {T1, T2, . . . , TM}. At each of these dates, the system
switches from one mode to another. The following description is inspired from Dock-
ner et al. [Dockner, 2000]. Let X ⊆ Rn denote the state space and xt ∈ X the
state at time t. The set of controls, when the current mode is h ∈ M , is given by
U(h, xt) ⊆ Rm.

The motion is described by the differential equation ẋt = f(h, xt, ut) where
f(h, ., .) maps Ω(h) = {(x, u)|x ∈ X,u ∈ U(h, x)} into Rn. The instantaneous payoffs
of the player consist of F (h, xt, ut), a real-valued function defined on Ω(h), and the
lump sum payoff Shk(xt), when a jump occurs from mode h to mode k, (k �= h). The
payoffs are discounted at the constant rate r > 0. The motion of the system mode is
a continuous-time stochastic process h : [0,∞)× Ξ �→ M , where the set Ξ of points
ξ represents realizations of some random variable. Thus, the event, that the mode
is h at time t, is {ξ ∈ Ξ|ht(ξ) = h} and its probability is denoted by P{ht(ξ) = h}.
The probability that the system switches from mode h to mode k during the time
interval (t, t+ ∆t] is proportional to the length of ∆. We have

lim∆→0
1
∆

P{ht+∆ = k|ht = h} = qhk(xt, ut)}, k �= h,

where qhk : Ω(h) �→ R+. The risk neutral player seeks to maximize the expectation
of the discounted payoff flow, conditional on the initial state and mode. Initially, we
state

J(u(.)) = Eu(.) [
∫ ∞

0

F (ht, xt, ut)e−rtdt+

+
∑
l∈N

ShT
l− hTl

(xTl
)e−rTl |x0, h0 given],

where Tl denotes the lth jump and hTl− , the mode immediately before the switch.
We also have

J(u(.)) = Eu(.) [
∫ ∞

0

{F (ht, xt, ut)+

+
∑
k 
=ht

qhtk(xt, ut)Shtk(xt)}e−rtdt | x0, h0 given]. (6)

Definition 7 (feasible path). Given Ξ a set of points ξ ∈ Ξ representing possible
realizations of a random variable, the control path u : [0,∞) × Ξ �→ Rm is feasible
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for the stochastic control problem if the following conditions are satisfied: (i) it is
non-anticipating, (ii) the constraints xt ∈ X and u(t) ∈ U(ht, xt) are a.s. verified,
(iii) the process (h(.), x(.)) and the integral in (4) are well defined. The control path
is optimal, if it is feasible and if J(ū(.)) ≥ J(u(.)) for all feasible paths.

Dockner et al. [Dockner, 2000] p.206–7, deduce the fundamental theorem.

Theorem 3 (optimal control path). Let us consider the autonomous problem 14and
suppose the existence of a bounded function V : M ×X �→ R which have the following
properties. The function V (h, x) is continuously differentiable in x for all h ∈ M
and is such that (omitting the time argument) the HJB equation

rV (h, x) = max {F (h, x, u) + Vx(h, x)f(h, x, u)+

+
∑
k 
=h

qhk(x, u)[Shk(x) + V (k, x)− V (h, x)]|u ∈ U(h, x)}, (7)

is verified for all (h, x) ∈ M × X. Let Φ(h, x) be the set of controls maximizing
the RHS of (7). Then the control path ut is optimal if the following conditions are
satisfied: the control u(.) is feasible and u(.) ∈ Φ(h(.), x(.)) holds a.s.

Proof. See Dockner et al. [Dockner, 2000], p. 207.

2.4. Piecewise deterministic differential games

Let a N -players autonomous game be a piecewise deterministic differential game
over an infinite time horizon. Denote by uit the control value by player i and

u−it = (u1
t , . . . , u

i−1
t , ui+1

t , . . . , uNt )

the vector of controls of the opponents of player i. The player’s i set of feasible
controls is

U i(ht, xt, u−it ) ⊆ Rmi ,

when the system is in mode ht ∈ M and state xt ∈ X . The objective functional of
the ith player is given by

J i(ui(.)) = Eu(.) [
∫ ∞

0

F i(ht, xt, ut)e−ritdt

+
∑
l∈N

Sihθ
l− hTl

xTl
e−riTl | x0, h0 given],

where Sih(T
l− hTl

(xTl
) denotes the payoff received if a jump occurs at time Tl from

hTl− to hTl
. Suppose as in [Dockner, 2000], that all players use a stationary Markov

14 Dockner et al. [Dockner, 2000] also consider the non-autonomous problem.
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strategy of the form uit = φi(ht, xt) then the player i’s optimal control problem is of
the form

maxui
(.)
J iφ−i(ui(.)) = Eu(.) [

∫ ∞

0

F iφ−i(ht, xt, uit)e
−ritdt

+
∑
l∈N

SihT
l− ,hTl

(xTl
)e−riTl | x0, h0 given],

s.t.

ẋt = f iφ−i(ht, xt, uit),

x0 given, uit ∈ U iφ−i(ht, xt),

where the piecewise deterministic process h(.) is determined by the initial condition
h0 and the switching rates qiφ−i,hk(xt, u

i
t). The functions F iφ−i and f iφ−i have the

same pattern as

F iφ−i(h, x, ui) = F i(h, x, φ1(h, x), . . . , φi−1(h, x), ui, φi+1(h, x), . . . , φN (h, x)).

The functions U iφ−i and qiφ−i,hk are defined by

U iφ−i(h, x) = U i(h, x, φ1(h, x), . . . , φi−1(h, x), φi+1(h, x), . . . , φN (h, x)),

qiφ−i,hk(x, u
i) = qi(x, φ1(h, x), . . . , φi−1(h, x), ui, φi+1(h, x), . . . , φN (h, x)).

Ddefinition 8 (stationary Markov–Nash equilibrium). A N -tuple of functions φi :
M × X �→ Rmi , i = 1, . . . , N is a stationary Markov-Nash equilibrium of the game
Γ(h0, x0) if an optimal control path ui(.) exists for each player i. If (φ1, . . . , φN ) is a
stationary Markov–Nash for all games Γ(h, x), then it is sub-game perfect.

Theorem 4 (stationary Markov–Nash equilibrium). Let us consider a given N-tuple
of functions φi : M ×X �→ Rmi , i = 1, . . . , N and assume that the piecewise deter-
ministic process defined by state motion

ẋt = f(ht, xt, φ1(ht, xt), . . . , φN (ht, xt))

and the switching rates

qhk(xt, φ1(ht, xt), . . . , φN (ht, xt))

is well defined for all initial conditions (h0, x0) = (h, x) ∈ M × X. Suppose the
existence of N bounded functions V i : M ×X �→ R, i = 1, . . . , N such that V i(h, x)
is continuously differentiable in x and such that the HJB equations

riV
i(h, x) = max {F iφ−i(h, x, ui) + V ix(h, x)f iφ−i(h, x, ui)

+
∑
k 
=h

qiφ−i,hk(h, u
i)(Sihk(x) + V i(k, x) − V i(h, x))| ui ∈ U iφ−i(h, x)}, (8)
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are satisfied for all i = 1, N and all (h, x) ∈ M × X. Denote by Φi(h, x) the set
of all ui ∈ U iφ−i(h, x) which maximize the RHS of (8). If φi(h, x) ∈ Φi(h, x) and
all (h, x) ∈M ×X then (φ1, . . . , φN ) is a stationary Markov-Nash equilibrium. The
equilibrium is sub-game perfect.

Proof. See Dockner et al.[Dockner, 2000], p.212.

3. A stochastic game of R&D competition

The following game is initially due to Reinganum [Reinganum, 1982] and has been
detailed by Dockner et al. [Dockner, 2000]. In this game N firms have competing
R&D projects. The dynamic game supposes that: (i) no firm knows in advance the

Fig. 5: A stochastic innovation game

amount of R&D that must be invested, (ii) R&D activities are costly but contribute
to higher accumulation of common know-how and then have positive externalities
(iii) one successful innovation may be achieved by using different paths. Resources
in R&D positively influence the probability of successful innovations. Once a firm has
won the competition, it acquires a monopolistic position. The problem is illustrated
in the figure 5.
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Game presentation
The time τi to complete a project is a RV, whose probability distribution is

Fit = P{τi ≤ t}, where for convenience Fit is taken similar to Fi(t). The RVs τi are
stochastically independent, since knowledge is supposed to have no spillover between
firms. Denote by τ = min{τi, i = 1, 2, . . . , N} the date of an innovation. According
to independency, we may read

P{τ ≤ t} = 1−
N∏
i=1

(1− Fit).

Let uit ≥ 0 be the rate of R&D effort. The rate of the distribution Fi is assumed to
be proportional to the R&D efforts

Ḟit = λuit(1− Fit), Fi0 = 0, λ > 0, (9)

where 1−Fi is the survival probability and Ḟit(1−Fit)−1 is the hazard rate. Assume
that the present value of the innovator’s net benefits PI is constant and greater than
the ones of the other competitors PF . The costs of R&D efforts are quadratic in the
investment rate. The game is played over a finite horizon T. This stochastic game
belongs to the class of piecewise deterministic games. The system is in mode 0 before
the innovation is happens. Ones an innovation by firm i has occurred, the system
switches from one mode to another mode i, i = 1, 2, . . . , N [Dockner, 2000].

Game analysis

The expected discounted profit to be maximized by the ith player is∫ T

0

{PI Ḟit
∏
j 
=i

(1− Fjt) + PF
∑
j 
=i

Ḟjt
∏
k 
=j

(1 − Fkt)−

− e−rt

2
u2
it

N∏
j=1

(1− Fjt)}dt. (10)

This expression consists of three terms, which weights are the probabilities: firstly
the firm i ’s value of net payoff PI if the firm becomes the first to innovate, secondly
the firm i ’s value of payoff PF if this firm looses the competition and, thirdly, the
discounted value of the cost of R&D efforts. Substituting the RHS of (9) into (10)
the payoff expression is simplified as follows∫ T

0

{λPIuit + λPF
∑
j 
=i

ujt −
e−rt

2
u2
it}

N∏
j=1

(1 − Fjt)dt. (11)

Let introduce the state transformation

− ln(1 − Fit) = λzit ⇔ 1− Fit = e−λzit .
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The state variable zit denotes the firm i ’s accumulated know-how via the R&D
efforts. A differentiation w.r.t. time yields Ḟi(1 − Fi)−1 = λżi. Hence, we have
żi = uit, zi0 = 0. The corresponding payoff is deduced from (11)

J i =
∫ T

0

{λPIuit + λPF
∑
j 
=i

ujt −
e−rt

2
u2
it} × exp[−λ

N∑
j=1

zjt]dt.

Let yt be equal to exp[−λ
∑N
j=1 zjt]. The differentiation w.r.t. time yields

ẏt = −λyt
N∑
j=1

ujt, y0 = 1. (12)

The game is then transformed to the following exponential game

J i =
∫ T

0

{λPIuit + λPF
∑
j 
=i

ujt −
e−rt

2
u2
it}ytdt,

s.t.

ẏt = −λyt
N∑
i=1

uit, y0 = 1.

Markov–Nash equilibrium

When omitting the time argument, the current-value Hamiltonians (i = 1, 2, . . . , N)
are

Hi(t, y, uiµi) = y{λPIui + λPF
∑
j 
=i

uj −
e−rt

2
u2
i } − µiλy(ui +

N∑
j 
=i

uj),

where µi, i = 1, 2, . . . , N are the current costate variables. The first order conditions
(FOCs) are

∂H(t, y, ui, µi)
∂ui

= 0 ⇒ ui = λert(PI − µit),

µ̇i = −∂H
i(t, y, ui, µi)
∂y

, µiT = 0;
(13)

uit = −btλert. (14)

We have N + 1 boundary conditions15 from the state equation (12) and FOCs (13).
To solve the boundary value problem let us conjecture a solution.

15 There are 2N + 1 variables namely y, µi, ui, i = 1, 2, . . . , N and 2N + 1 equations.
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Using the expression of ui in (13) and substituting into (12) we have ẏt =
λ2Nbtytert, y0 = 1. To hold the conjectured solution, bt must satisfy a Ricatti
differential equation (RDE):

ḃt = −λ
2ert

2
{(2N − 1)b2t + 2bt(1 −N)(PF − PI)},

bT = −PI .
(15)

The solution of the RDE (15) can be found by an CVF method letting g(t) = −1/bt.

Fig. 6: Control, state, costate in an innovation game with two firms

Substituting the solution of bt into (14) yields the Markovian identical strategies ut =

=
2λPI(PI − PF )(N − 1)ert

(2N − 1)PI + {PI + 2(N − 1)PF } × exp[ 1r (PI − PF )(N − 1)λ2(ert − erT )]
.

The Figure 6 shows the control variable, the state and the costate variables, when
the game is reduced to two competitors (N = 2).

4. A stochastic game of patent race

In some market modelsN incumbents and one entrant aim to invent a new process
or a new product, and patent their innovations. In the model of [Dasguspta, 1980],
[Reinganum, 1982], [Tirole, 1990]the patent race is to develop a cost reducing produc-
tion process for an existing product, in the model of Gayle [Gayle, 2001] the firm are
patenting a new product. This model is in line with the one of Loury [Loury, 1979]
and its developments by Lee and Wilde [Lee, 1980] where a stochastic relationship is
assumed between R&D investments and the time at which an innovation will occur.
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Description of the game

An output market is composed of N+1 firms, which are attempting to produce a
new product and taking simultaneously a patent16. N of these firms are incumbents
and one firm is a potential entrant. The rate of investment in R&D is xi, i = 1, . . . , N
for an incumbent, and z for the entrant. The date of success for an innovation
is supposed to depend only on the R&D investment rate17 such as τi(xi). The
probability that the firm i succeeds at or before the date t is

P{τi(xi) ≤ t} = 1− exp[−h(xi)t], t ∈ [0,∞),

where h(.) denotes the hazard function. Let this function be twice differentiable,
strictly increasing, concave and satisfying the following conditions: h′(.) > 0, h′′(.) <
0 for all xi, z ∈ [0,∞), and limxi,z→∞h

′(.) = 0. The conditional probability that the
firm i will succeed in the instant, given that it has not already succeeded is

P{τi(xi) ∈ (t, t+ dt]|τi > t} = h(xi)dt, t ∈ [0,∞).

This result is due to the memoryless property of the exponential distribution18. Let
τ̄i represents the date at which the first firm introduces an innovation. Then τ̄i =
minj 
=i{τ̄(xj)}, and

P{τ̄i ≤ t} = 1− P{τj > t}, for all j �= i

= 1− exp[
∑
j 
=i

h(xj)].

Finally, let us suppose the following constant non-discounted profits: PAi the incum-
bent i ’s profit before any innovation occurs, PWi the incumbent i ’s profit if he wins
the patent race, PLEi the incumbent i ’s profit if he loses the patent race to the en-
trant, PLIi the incumbent i ’s profit if he loses the patent race to another incumbent,
and PE the profit of the entrant when he wins the patent race.

The expected profits of incumbents i, i = 1, 2, . . . , N are given by:

V i =
∫ ∞

0

exp[−{h(xi) +
N∑
k 
=i

h(xk) + h(z)}t]×

× {PAi − xi + h(xi)
PWi
r

+ h(z)
PLEi
r

+
N∑
k 
=i

h(xk)
PLIi
r
} × e−rtdt. (16)

16 The following game of patent race is inspired from the presentation of Gayle [Gayle, 2001].
17 Reinganum [Reinganum, 1982] [?] assumes that the probability of introducing an innovation is

a function of both the current of investment in R&D and the accumulated stock of technology.
18 Let the PDF of the R.V. T be f(t)dt = λe−λtdt. We have the moment E[T k] =

�∞
0

tkf(t)dt.

Then E[T k] = Γ(k + 1)λ−k = λ−kk!, since Γ(k) =
�∞
0

e−uuk−1du = (k − 1)!. Hence, E[τ ] = λ−1.
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The expected profit of the entrant is

V E =
∫ ∞

0

exp[−{h(xi) +
N∑
k 
=i

h(xk) + h(z)}t]× {h(z)
PE
r
− z} × e−rtdt. (17)

Integrating (16) and (17), we have the system for the R&D subgame

V i =
PAi − xi + h(xi)

PW
i

r + h(z)P
LE
i

r +
∑N

k 
=i h(xk)
PLI

i

r

r + h(xi) +
∑N
k 
=i h(xk) + h(z)

,

V E =
h(z)PE

r − z
r + h(xi) +

∑N
k 
=i h(xk) + h(z)

.

Best response functions

The reaction functions (BRFs) are then deduced from the following N + 1 FOCs

∂V i

∂xi
= 0, i = 1, . . . , N and

∂V E

∂z
= 0.

A Nash equilibrium of R&D spending must then satisfy the following conditions
(omitting the nonzero denominator of the LHS):

{r + h(xi) +
N∑
k 
=i

h(xk) + h(z)} × (h′(xi)
PWi
r
− 1)−

− {PAi − xi + h(xi)
PWi
r

+ h(z)
PLEi
r

+
N∑
k 
=i

h(xk)
PLIi
r
}h′(xi) = 0, (18)

{r + h(xi) +
N∑
k 
=i

h(xk) + h(z)}(h′(z)PE
r
− 1)− (h(z)

PE
r
− z)h′(z) = 0. (19)

The equation (18) is the incumbent i ’s BRF with upward sloping19, given the R&D
investments of his opponents. Similarly, (19) is the entrant’s BRF with upward
sloping, given the R&D investments of his opponents.

19 In the case of symmetry between the BRFs of the incumbent and entrant, when N = 1, PLE =
PA = 0, we have the incumbent’s BRF

F (x, z) = {h′(x) +
1

r
h′(x)h(z)}P W − h′(x)P A − r − {h(x) + h(z)} + xh′(x).

By the implicit function theorem, we deduce

dx

dz
= −Fz

Fx
= − h′(z){h′(x)P W

r
− 1}

h′′(x){1 + h(z)
r

}P W + xh′′(x)
.

The derivative dx/dz is positive because of a non-negative numerator with non-negative expected
profits and due to a negative denominator with the concavity of h(.).
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Symmetric Nash equilibrium

Fig. 7: Symmetric Nash equilibria

A symmetry of the BRFs is achieved when N = 1, PLE = PA = 0. The BRFs
are then defined by

{h′(x) +
1
r
h′(x)h(z)}PWi − h′(x)PNi − r − {h(x) + h(z)}+ xh′(x) = 0,

{h′(z) +
1
r
h′(z)h(x)}PE − r − {h(x) + h(z)}+ zh′(z) = 0.

The Figure 7 (a) shows the reaction functions and the Nash equilibrium. Due to the
stability condition, the incumbent’s reaction function is steeper than the entrant’s
one20Both reactions functions intersect on the 45◦ line. The expected pre-innovation
profit PA only occurs in the incumbent’s BRF. A positive PA will then shift the
incumbent’s BRF to the left, as it is shown in figure Fig.(b). As a consequence to
the shift, we observe with [Gayle, 2001] that the R&D spending equilibrium of the
incumbent will be less than that the one of the entrant.

5. Concluding remarks

20 The stability condition is expressed by

|V i
xx| > |V i

xz | and |V E
zz| > |V E

zx|
in the neighborhood of the equilibrium (see Figure 7 (b)).
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The differential games in R&D economics give some indications and results about
debates and questions, like the relation between the concentration of an industry and
the intensity of R&D investments. The consequences of the market structures (so-
cially managed market, pure monopolist with barriers to entry, competitive economy)
on R&D have been studied notably by Dasguspta and Stiglitz [Dasguspta, 1980]. For
example, the correlation between concentration and R&D efforts depends upon the
existing degree of concentration and upon free entrance. For Loury [Loury, 1979],
given a market structure, firms will rather more invest in R&D than is socially
optimal. Reinganum [Reinganum, 1982] considers the optimal resource allocation
in R&D, the social optimality of the game and implications of innovation policies
(taxes and subsidies, patents). Noncooperation or cooperation aspects also play a
great role. If costs are not too high, a firm may choose to cooperate in R&D in-
vestments with one or some other firms. Dasguspta and Stiglitz [Dasguspta, 1980],
Reinganum [Reinganum, 1982], Amir, Evstigneev, Wooders [Amir, 2003] have stud-
ied such cooperations. Yeung and Petrosyan [Yeung, 2006] consider the theory of
the cooperative stochastic differential games and analyze a cooperation R&D game
under uncertainty over a finite planning period. This paper has introduced to the
approach of stochastic games in theory and application. Two simple examples of
noncooperative games in R&D have been developed. The first example of stochastic
game belongs to the class of piecewise deterministic games. Then, when an inno-
vation occurs, the system switches from one mode to another. Indeed, the winning
firm is supposed to acquire immediately a monopolistic position. The second ex-
ample considers a stochastic game between several incumbents of an industry and a
potential entrant. In this model, the R&D spending equilibrium of the representative
incumbent (the game is symmetric) is rather less than the one of the entrant. Recent
papers relax or improve some strong assumptions. Sennewald [Sennewald, 2007] re-
laxes the strong assumption of boundedness conditions when applying the Bellman
equation (bounded utility function, bounded coefficients in the differential equation).
The HJB can then still be used with linearly boundedness. Let us also indicate the
less recent model of endogenous growth by Aghion and Howitt [Aghion, 1992]. In
this model, according to a forward-looking difference equation, the research expenses
in any period depend upon the expected research investment next period.

Appendix

Ito’s lemma for Poisson Processes

Ito’s lemma for Poisson processes is not frequently presented in textbooks. This
appendix shows the corresponding rule, its proof and one application to TFP.

Lemma 3 (Ito’s lemma for a Poisson process). Given a Poisson SDE

dxt = adt+ bdqt, where a and b are constant. (20)

Let F (t, xt) be a continuously differentiable equation of t and x. Then, we have

dF (t, xt) = (Ft + aFx)dt+ {F (t, xt + b)− F (t, xt)}dqt. (21)
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Proof. By differentiating the function F (t, xt) and using equation (20), we have

dF (t, xt) = F (t+ dt, xt+dt)− F (t, xt) =
= F (t+ dt, xt + adt+ bdqt)− F (t, xt).

(22)

Adding and subtracting F (t+ dt, xt + adt) in equation (22) we have

dF (t, xt) = F (t+ dt, xt + adt+ bdqt)− F (t+ dt, xt + adt)−
−F (t, xt) + F (t+ dt, xt + adt).

(23)

The last two terms of equation (23) correspond to a situation where we have no jump.
Hence, with xt = at and dxt = adt, we have

F (t+ dt, xt + dxt)− F (t, xt) = Ftdt+ Fxdxt =
= (Ft + aFx)dt.

(24)

According to equations (23) and (24), we deduce

dF (t, xt) = F (t+ dt, xt + adt+ bdqt)− F (t+ dt, xt + adt)+
+(Ft + aFx)dt.

(25)

The first two terms of equation (25) have a different expression according that a jump
may or not occur. We have

F (t+ dt, xt + adt+ bdqt)− F (t+ dt, xt + adt) =

=

{
F (t, xt + b)− F (t, xt) w.p. λdt, with jump
0 w.p. 1− λdt, without jump

= {F (t, xt + b)− F (t, xt)}dqt.

Then, we find the Ito’s formula for a Poisson stochastic differential equation

dF (t, xt) = (Ft + aFx)dt+ {F (t, xt + b)− F (t, xt)}dqt.

Example (Total factor productivity). The stochastic differential equation is given
by [Wälde, 2006])

dAt
At

= gdt+ σdqt, (26)

where g and σ are constants. The equation (26) is equivalent to

dAt = gAtdt+ σAtdqt.
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In this example, the parameters of the stochastic differential equation (20) are a ≡
gAt = at and b ≡ σAt = bt. Let us apply the Ito’s formula (21). Taking F (t, At) =
lnAt, we have Ft = 0 and FA = 1/At. We also determine

ln(At + σAt)− lnAt = ln(1 + σ).

Then according to Ito’s formula, we have

d lnAt = g + ln(1 + σ)dqt. (27)

By integrating both sides of equation (27), we obtain∫ t

0

lnAs = gt+ ln(1 + σ)
∫ t

0

qs.

Hence,
[lnAs]t0 = gt+ [qs]t0,

and
lnAt = lnA0 + gt+ ln(1 + σ)(qt − q0).

The path of the total factor productivity is then given by

At = A0 exp[gt+ ln(1 + σ)(qt − q0)].
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Allen E. 2007. Modeling with Itô Stochastic Diffrential Equations, Dordrecht.
The Netherlands. Springer.

Amir R., Evstigneev, Wooders J., Noncooperative versus Cooperative R&D
with Endogeneous Spillover Rates. Games and Econ. Behav, 42: 183–207.

Dasguspta P., Stiglitz J. 1980. Uncertainty, Industrial Structure and the Speed
of R&D. Bell J.Econom., 11: 1–28.

Dockner E., Jorgenson S., Long N.V.,Sorger G., 2000. Differential Games in
Economics and Management Science. Cambridge. Mass., Cambridge University
Press.

Friedman A., 2004 Stochastic Differential Equations and Applications. New
York. Dover Publications Inc.

Gayle P.G., 2001 Market Structure and Product Innovation. Boulder (Col-
orado). University of Colorado; 01–15.



Stochastic Differential Games 269

Gross D., Harris C.M. 1998. Fundamentals of Queueing Theory. ed. 3. New
York. Wiley & Sons

Kendall W. S. 1993. Itovsn3: Doing Stochastic Calculus with Mathematica.
In: H.R. Varian, Edit, Economic and Financial Modeling with Mathematica. New
York. Springer-Verlag; 214–238.
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