
 

 

 

Abstract—This article introduces to the modeling process and 

reviews the essential features of the well-known Lotka-Volterra 

multispecies system in ecological modelling. The interacting 

population dynamics may be competitive or cooperative in the noisy 

environment of real world situations. In this stochastic context, the 

conditions for positive non exploding solutions are given. The 

computations have been carried out by using the software Wolfram 

Mathematica ® 8 
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I. INTRODUCTION  

HIS introductive paper is dedicated to population growth 

dynamics in a noisy constrained environment. The time 

delay systems [20] in population dynamics seek to explain the 

variation in size and composition of biological populations, 

such as humans, animals, plants and microorganisms or cells.
1
 

 
Figure 1. Lotka-Volterra system without internal competition. 
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1 A history on population dynamics is presented by Bacaër (2011)[2],. 

Hillion (1980)[16] introduces to the different models in discrete and 

continuous time. The interactions among species are considered by May et al.  

(1979)[29] in application to the management of multispecies fisheries. Time 

lags in biological systems have been already analyzed by MacDonald 

(1978)[26]. Gopalsamy (1992)[12] and Kuang (1993)[23] are using DDEs 

with applications in population dynamics. 

   Suppose a closed system (no migration) with two species. 

The possible interactions may correspond to one of the 

following four situations: 1) a competition between and/or 

within the two populations, 2) a conflict between them, one 

being a predator and the other a prey, 3) a mutual benefit of 

both populations or 4) completely  independent species. Such 

situations are depending on the sign of the parameters as 

indicated in TABLE I. The two-species system is  
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Figure 1 illustrates
2
 the deterministic Lotka-Volterra (L-V) 

system [24][32] for which one population 
1x is  the prey (e.g. 

rabbits, plants) and the other 
2x  the predator (e.g. foxes, 

herbivores). As shown, the trajectories turn around the nonzero 

steady state counterclockwise. Using the 2-species system (1), 

without internal competition 
11 22 0b b  , that the solution 

trajectory in the phase plane is  

 1 2 21 1 2 1 12 2 1 2 1
( ), ( ) ( ) ln ( ) ( ) ln ( ) ,H x t x t b x t a x t b x t a x t k       

 

where 
1k is the constant of integration (See Gandolfo 

(1980)[9], pp. 428-454 and Shone (2002)[31], p.607). 

TABLE I. POPULATION DYNAMICS 

 12 21 0b b   
12 21 0b b   

12 21, 0b b   

12 21, 0b b   
12 21, 0b b   

11 22, 0b b   Predator-prey 

with 

overcrowding 

Full 

competition 

within & 

between 

Over 

crowding 

& 

cooperate 

Over 

crowding. 

&  

independence 

11 22, 0b b   Lotka-

Volterra 

Competitive  

system 

No over 

Crowding 

& 

cooperate 

No over 

Crowding 

& 

independence 

11 22, 0b b   Expansion Expansion & 

competition 

Mutual 

benefit 
Expansion & 

independence 

   The generalization to n interacting species is the 

n dimensional Lotka-Volterra system 

( ) ( ) ( ) , 1, ,
1

n
x t x t a b x t i ni i i ij j

j
  



 
 
 

    

 
2 The Mathematica primitive Manipulate[…] creates an interactive object 

(as in Figures 1 and 2) containing controls (sliders) for different parameters 

of the system. These interactive applications let explore different ranges of 

values for the coefficients, the delays and the initial conditions. The 

consequences on the results of such modifications are observed immediately. 
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where the ai ’s are the intrinsic growth rates, and the 
ijb ’s the 

interaction rates, whose signs reflect the type of population 

dynamics. In matrix form, we also have 

    ,( ) diag ( ) ( )t t t x x a Bx  (2) 

where , ,
n n n

 x a B     . The existence of an equilibrium 

solution x  requires  a Bx 0 . Gard [10] shows that x  is 

globally stable in 
n


if there is  1diag , , nc cC with 

0, 1, ,ic i n    such that  

 
TCB B C  (3) 

is negative definite.  

II. DELAY LOTKA-VOLTERRA SYSTEM 

B Multispecies Delay Systems 

To model the population dynamics of n interacting species 

in a common habitat, an n  dimensional system of DDEs may 

be introduced. A delayed effect of one species
3
 on another is 

introduced by means of lagged interaction terms 
4
, such as 

   ( ) diag ( ) ( ) ,t t t   x x a B x   (4) 

where ,,
n n n

 x a B  . The  autonomous competitive or 

cooperative L-V system  may have several delays, as in  Lu & 

Chen (2007)[25] 

   
1 1

( ) ( ) ,
n n

i i i ij j ij j ij
j j

x t x t b a x t b x t 
 

    
 
 
 

  

where  1, ,i n . All the coefficients are real constants
5
. The 

permanence of all the populations  supposes that the linear 

system 

1 1
0

n n

ij j ij j
j j

b a x b xi  
     

has a positive solution. 

Let a simplified L-V system of the form [11] 

  
1

.( ) ( )
n

i i i ij j jjj
x t x t b a x t 


  

 
 
 

 (5) 

THEOREM 2.1 (Gopalsamy, 1991) [11] Suppose that the L-V 

system (5) satisfies the  conditions 

(i) the coefficients , ( , 1, , )b a i j ni ij    are real constants 

such that 0, 1, ,iia i n   and the system (5) has a positive 

 
3 The delay is generally justified by resources that have been already 

accumulated. 
4 The predator-prey system with aftereffect has been introduced by  

Volterra (1931)[32]. The growth rate of a species is also influenced by the 

past history of the population. Thus, the loss of prey may affect the growth 

rate of predators in future [22]. 

5 The bi ’s are birth rates ( 0bi  ) or death rates ( 0bi  ). The L-V 

system is competitive with time delays,  if , 0, , 1, ,a b i j nij ij    . On 

the contrary, the L-V system is cooperative with time delays, if 

, , 0, , 1, , ,0 0a a b i j n i jii ij ij       .  

 

steady-state equilibrium x  such that 

1

, 1, ,
n

ij j i

j

a x b i n


     

(ii) 1q e  ,where 
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i n
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  and  

1
min ii

i n
 

 
  . 

Then every nonconstant solution of (5) on  ,  is 

oscillatory about the steady-state. 

Proof. See  Gopalsamy (1991)[11], pp.442-447. 

B Instability Effects of Delays 

Let the two species L-V system be the numerical system 

 

 

1 1 2 2

2 2 1 1

( ) ( ) 1 ( ) ,

( ) ( ) 2 ( ) ,

x t x t x t

x t x t x t





   


  

 

where 1( )x t and 2 ( )x t denote the biomasses of the predator (or 

parasite) and of the prey (or host), respectively. Without 

delays ( 1 2 0   ), there is a stable periodic solution which 

expression is 

.( ) 2 ln ( ) ( ) ln ( ) ( )
1 1 2 2 1

H t x t x t x t x t k      

 
Figure 2. Effect of delays on the periodic orbit of the L-V 

system. 

The presence of delays in biological systems is a potent 

source of nonstationary problems (periodic oscillations and 

instabilities): the loss of stability intervenes at a certain 

threshold. Figure 2 depictes the dynamic instabilities due to 

the two lags 1
0.45   and 2

0.25  . However, time delays 

can also enhance stability, and short delays can stabilize 

unstable dynamical systems  [4]. 

B Delay Lotka-Volterra Food Chain 

Let the LV system of food chain with time delayed 

interactions, for three species 

    3( ) diag ( ) ( ) ( ) ,t t t t     x x b A x B x x     (6) 



 

 

where 

1 11 12

2 22 21 23

3 33 32

0 0 0 0

, 0 0 , 0 ,

0 0 0 0

b a a

b a a a

b a a

      
     

          
           

b A B  

where 1 2,x x  and 3x  are respectively the population densities 

for a prey, an intermediate predator and a top predator. Gard 

[10],  p.174 shows
6
 that an equilibrium  1 2 3, ,

T
x x xx = exists 

in the positive cone 3

 , if 

 11 11 22 12 21

1 2 3

21 21 32

0
a a a a a

b b b
a a a


    (7) 

The equilibrium is globally asymptotically stable as long as the 

condition  (3) is satisfied
7
. 

III. STOCHASTIC DELAY LOTKA-VOLTERRA SYSTEM 

B Stochastic Lotka-Volterra System 

   Let the nondelay multispecies L-V system be (2), and 

suppose that all the parameters ijb ’s are stochastically 

perturbed  [27] with  ( )ij ij ijb b w t  . The SDEs 

corresponding to that system is
8
 

     ( ) diag ( ) ( ) ( ) ( ) ,d t t t dt t d t  x x a Bx x w  (8) 

where ,n n n a B  and where the noise intensity matrix 

 ij n n



 supposes  that (H1): 0ii  if 1 i n  , while 

0ij  if i j . The nonnegative solution 
9
 may explode in a 

finite time, since the coefficients do not satisfy the linear 

growth sufficient condition, though they are locally Lipschitz 

continuous: the Lipschitz condition ensures the existence and 

uniqueness of the solution, whereas the linear growth condition 

ensures the boundedness of the solution . Mao et al. 

(2002)[27] prove that the environmental Brownian noise 

suppresses a deterministic explosion. 

THEOREM 3.1 (Mao, Marion, & Renshaw 2002) [27] Under 

assumption  H1, for any coefficients ,a B and any initial value 

0

n

x , there is a unique global solution ( )tx to (8) on 

0t  . Moreover, the solution will remain in the cone n

  with 

probablity one. 

Proof.  See Mao, Marion, & Renshaw ( 2002)[27], pp. 99-

102. 

 
6 The notations have been adapted to this study. 
7 Here, we have 

1 11

2 22

3 33

0 0

( ) ( ) 2 0 0

0 0

T

c a

c a

c a

    

 
 
 
 

C A B A B C . 

8 All the coefficients may be stochastically perturbed with 

1
( )t b b w  and 2

( )t A A w  , where 1( )tw and 2 ( )tw  

are independent Brownian motions , as in Mao et al.(2002)[27]. 
9 The size ix of the ith species should be nonnegative. 

B  Stochastic Delay Lotka-Volterra System 

   The following delay LV system generalizes the deterministic 

n -dimensional  system  (4). We have [3][5][6][28] 

   ( ) diag ( ) ( ) ( ) , nt t t t     x x b Ax Bx x  (9) 

   Suppose a noisy environment, where  the intrinsic growth 

rates 
ib ’s are replaced by   ( )i ii j jb x x w t  , where jx is 

an equilibrium state component, ii ’s  positive constants, 

( )w t a Brownian motion on a completely probability space 

  , , ,
0t t




F F  and  ( )w t a white noise. The Lotka-

Volterra SDDE, corresponding to (9)  is 

 
      

  

( ) ( )

( ) ( )

( ) diag ( ) t t dt

t d t

d t t    

 

 A x x B x x

x x w

x x  

              

 (10) 

THEOREM 3.2 (Mao, Yuan, & Zou, 2005)[28] Under 

assumption H1, for any coefficients A , B and any initial data 

     ( ) : , 0 , 0 ;
n

t t C     x , there is a unique 

global solution ( )tx to (10) on t   . Moreover , the solution 

will remain in the cone n

  with probability one.
10

 

Proof.  See Mao, Yuan, & Zou ( 2005)[28], pp. 303-305. 

B Stochastic Delay Lotka-Volterra Food Chain
11

 

   The stochastic version of (6) , around the equilibrium state 

x  is 

 
      
   3

( ) diag ( ) ( ) ( )

( ) ( ) ,

d t t t t dt

t d t





    

   

x x A x x B x x

x x B x              
 (11) 

where  11 22 33diag , ,   . Mao et al. (2005)[28] 

conclude that the equilibrium x is globally asymptotically 

stable with probability one , if two conditions are satisfied. 

Letting 
2 2 2

11 22 33ĉ a a a
  

   , we have the two conditions 

     2 2 2 2
12 32 21 23

ˆ 1c a a a a     (12) 

and  

      2 2 2 2 2
12 32 21 23 ,1ˆ1ii

ii

i

i n
a

c a a a a
x

         (13) 

The condition (12) guarantees  [28] that the steady state 

equilibrium x  of the deterministic system  (6) is globally 

asymptotically stable. The condition (13) gives [28]  the upper 

bound for the noise, so that the equilibrium of the SDDE (11) 

is still globally asymptotically stable with probability one. 

 
10 The uniqueness of a positive solution under some conditions and the 

fact that the solution will not explode in a finite time with probability one has 

been also proved by Yin  et al.(2009)[36] for a generalized stochastic delay 

L-V system of the form 

         ( ) diag ( ) ( ) ( ) ( ) ( ) ,d t t t t dt t d t   x x f x g x h x B

where , : n n
f g , : n n m

h  are continuous functions 

and  1( ) ( ), , ( )
T

mt B t B tB an m  dimensional Brownian motion. 

11 This stochastic L-V system with constant delay has been extended to a 

variable delay in Xu et al. (2009)[35] 



 

 

APPENDIX A : DELAY STOCHASTIC PROCESS 

B Itô Formula [1][8] 

DEFINITION A1 (Wiener process). A continuous-time 

stochastic process ( ), 0z t t  is a  Wiener process (or 

Brownian motion) satisfying  three the properties 

(i) initial value (0) 0z  , 

(ii) stationary independent increments    1k kz t z t  for 

1, ,k n  

(iii) Normal distribution with  ( ) ( ) ( )z t z s t s   E  and 

 
2 2( ) ( ) ( )z t z s t s    

 
E , where  denotes the drift and 

 the diffusion rate
12

. 

THEOREM A1 (Itô’s formula). (Oksendal, 2003[30]) Let 

( )x t be an Itô process given by 
t tdX u dt b dB   . Let (.)g  a 

twice continuously differentiable function . Then 

 ,t tY g t X is again an Itô process, and 

      
2

2

2

1
, , , ,

2
t t t t t t

g g g
dY t X dt t X dX t X dX

t x x

  
  
  

 

where     
2

t t tdX dX dX is calculated according to the 

multiplication rules . . . 0, .t t t tdt dt dt dB dB dt dB dB dt    . 

Proof. See  Oksendal (2003)[30], p.46. 

B Stochastic Delay Differential Equation [19][30][33] 

Let a stochastic nondelay differential equation (SDE) be 

    ( ) , , ,t t tX t b t X t X W   (14) 

where (.)b  and (.)  are given functions and 
tW is the white 

noise process
13

.  According to (14), tX is the solution of the 

integral equation 

    0
0 0

, , ,
t t

t s s sX X b s X ds s X dB      (15) 

for an appropriate Itô or an Stratonovich interpretation 
14

of the 

second integral in (15). 

   Now, we consider the  following SDDE [14] 

    ( ) ( ), ( ) ( ) ( ),dx t f x t x t dt g x t dW t     (16) 

where (.)f  and (.)g  are known functions,  is the delay, 

 scales the noise amplitude and ( )W t is a Wiener process for 

 
12 The probability function is given by  

 
2

1
1

22( ) 2 .

z

tf z t e





 
   

   

13 We also replace k kW t by ,
k

t t
kk

B B B  where the process 

 
0t t

B


is the Brownian motion [30], p.22.  

14 The Itô and the Stratonovich stochastic integrals generally differ [1]. For 

example, the Itô integral  
0

2
1 2 2

2 2
( ) ( ) ( ) (0)

t t
W s dW s W t W   ,  

Differs from  the Stratonovich integral for this example 

 
0

1 2 2

2
( ) ( ) ( ) (0) .

t

W s dW s W t W       

Proof. See Allen (1980)[1], pp. 80-81. 

which ( ) 0W t    and 2 ( )W t t   . If (16) is interpreted 

using Stratonovich calculus, the equivalent Itô formulation is 

     

 

2

0

( ) ( ), ( ) ( ) ( )
2

( ) ( ).

d
dx t f x t x t g x t g x t dt

dx

g x t dW t






  
   
  

                 

 

EXAMPLE A1. A stochastic delay logistic equation satisfies 

the following SDE 

  ( ) ( ) ( ) ( ) ( ).dx t a bx t x t dt x t dW t       (17) 

According to the Stratonovich interpretation of (17), we have 

the equivalent Itô SDDE 
2

( ) ( ) ( ) ( ) ( ).
2

dx t a bx t x t dt x t dW t


 
 

     
 

  

Proof. Using (16), we have  the following equivalences 

   ( ), ( ) ( ) ( )f x t x t a bx t x t       and  ( ) ( )g x t x t  

B Solution to  Basic Stochastic Processes 

EXAMPLE A2 (Geometric Brownian Motion (GBM). For a  

GBM  taking the form  

 
( )

( ),
( )

dx t
a dt b dW t

x t
    (18) 

 the solution in term of ( )W t is
15

 

 

2

( )
2

( ) (0) , 0

b
a t bW t

x t x e t

 
  

 
    (19) 

Proof. By integrating both sides of (18), we get 

( )
( )

( )

dx t
at bW t

x t
  . To evaluate the integral on the LHS, the 

Itô formula is used for the function ( , ) ln , 0f t x x x  . We 

have  
21

( , ) ' ' "
2

t x xxdg t x g dt g dx g dx   . After some 

calculations, we deduce 
2( ) 1

ln ( )
( ) 2

dx t
d x t b dt

x t
  , then 

evaluate the integral as 
2

0

( ) ( ) 1
ln

( ) (0) 2

t dx t x t
b t

x t x
   and get (19)

. 

EXAMPLE A3 (Stochastic delay logistic equation). For a 

logistic SDDE taking the form 

 
( )

( ) 1 ( ) ( ) ( ),
x t

dx t a x t dt g x t dW t
K

 
   

 
 

the solution in term of ( )W t is 

2

2

( )
2

( )
2

0

(0)
( ) , 0

(0)
1

b
a t bW t

b
a s bW st

x e
x t t

x
a e ds

K

 
  

 
 

 
  

 
 

 

 

   

Proof. See Gard (1988)[10], p. 166. 

 
15 Numerical applications may use the Mathematica 5.1  packages 

Statistics`ContinuousDistributions,  StochasticEquations `EulerSimulate and 

Itovns3[19]. The primitive of EulerSimulate is 

EulerSimulate[drift,diffusion,{x,x0},{duration, nsteps}] . The primitive 

returns a list of simulated values for the corresponding Itô process. 



 

 

APPENDIX B : DELAY LOGISTIC EQUATION 

A. Logistic growth 

A single species population growth ( )n t not only with the 

population size ( )n t . As it growths, its members come into 

competition for food and other limited resources. Additional 

deaths are due to the ( 1) / 2n n  interactions.  We then have 

 
.

( ) ( ) 1
( ) ( )

1 2

n t n t
n t k n t k


      

In a constant environment ( , )r K , we may also write  as in 

Hofbauer & Sigmund (1988)[17], p. 33 

,
( )

( ) ( ) 1
x t

x t r x t
K

 
 
 
 

   

 where r is the Malthusian growth rate and K the carrying 

capacity of the environment 
16

 The global solution is  

 
0( ) , 0

1
0

r t
K x e

x t t
r t

K x e
 

 

 
 

  
  

Proof. The solution can be obtained by separating the 

variables. Integrate the inverse
dt

dx
yields ( )t x  and invert . • 

B Delay logistic equation 

The population growth may be controlled by a  feedback 

loop with reaction lag, as in the following Hutchinson logistic 

form  [13][15][18] 

( )
( ) ( ) 1 , , 0

x t
x t r x t r K

K


  

 
 
 

     

where  denotes the required time-lag to reproduce a limited 

resource. Rescaling the variable with ( ) 1
t

x t K y


 
  

  
  

, 

we have the Wright’s equation [21][34] 

 ( ) 1 ( ) ( ), ( ) 0,y t y t y t y t t            

where  r   . Qualitative studies show that the presence of 

delays is a potential source of nonstationarities such as with 

periodic oscillations and instabilities  (TABLE II) [4] 

TABLE II. PATTERNS OF THE SOLUTION 

  solution pattern 

 1
0, e


 

Monotonic convergence to K  

1
,

2
e

 
 
 

 
Oscillatory convergence to K

 
 

,
2




 
 
 

 
Oscillations in a stable limit cycle 

   

Changing the variable, we may write the equivalent form 

 
16 In a changing environment,  the parameters r  and K  become time-

dependent (periodic) functions. The solution is also a periodic solution (see 

Zhang & Gopalsamy, 1990)[37]. 

  ( ) ( )x t f x t     (20) 

Proof. The equivalent form (20) is obtained by letting 

 ln 1 ( ) ( )y t x t  for ( ) 1y t   , and ( ) 1
x

f x e  • 

By reparameterizing the equation and by scaling the time [7], 

we also get 

 ( ) ( 1)x t f x t    

B  Stochastic delay logistic equation 

Given the single-species population dynamics 

   , , 0( ) ( ) ( ) a bx t x t a bx t        (21) 

where a is the Malthusian growth rate, b scales the 

environmental constraints and time-delay  is the reaction time 

of the population to environment. The fixed points of (21) are 

1 0x   and 
2

a
x

b
 . Linearizing around 

2x  leads to the 

equivalent Langevin equation  [14] 

( ) ( ), 0x t ax t a     

Suppose that the parameter b  in (21) is stochastically 

perturbed with ( )b b w t  , where   scales the noise 

amplitude. The Wiener process ( )w t is characterized by the 

following averages over realizations ( ) 0w t    and 

2
( )w t t   . For the Itô interpretation, we retain the 

following SDDE 

   ( )( ) ( ) ( ) ( ).x tdx t a bx t dt x t dw t       (22) 

If (22) is interpreted using a Stratonovich calculus, the 

equivalent Itô SDDE is 
2

( ) ( ) ( ) ( ) ( ).
2

dx t a bx t x t dt x t dw t
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