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Abstract: - In many test functions for solving continuous optimization problems, we may have a large number of local 
minimizers with at least one global minimizer. This situation increases the difficult challenge for finding an optimum 
solution and choosing one of them. Moreover, some minimizers with less performance may be preferred in the real-world 
problems. In fact, other qualitative criteria may be used in the decision process, such as cost or computational aspects. The 
purpose of this study is the location of the global minimizers and the exploration of their neighborhood. The stochastic 
search iterative procedure refers to the Monte-Carlo methods  In this study, it consists in partitioning the rectangular search 
space in  small spaces. In each space, a starting point is selected at random. Local minimizers are obtained by using these 
starting points. Thereafter, these minimizers are sorted with respect to their performances. This approach is focused on the 
two-dimensional Shubert’s test function I. The computations are carried out by using the software Wolfram Mathematica 
® 7.  
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1. Introduction 
This paper is a practical approach of 

optimization techniques [3]. The computations use 
the software package Wolfram MATHEMATICA® 7 
[11]. The technique consists in partitioning the 
search domain of a function, for which optimum 
solutions are searched. A grid with a mesh is used. 
The problem is to find the best approximations of 
the exact global minimum solutions. The 
multimodal trigonometric polynomial Shubert test 
function is chosen 1 as the main application for this 
study. 

2. Random Search Approach 

The scatter search methods2 refer to a class of 
evolutionary methods that make use of 
randomization, for searching global optimal 
solutions [4].  This approach belongs to the first 
type of scatter methods3 in [6] that is a 

                                                 
1 Other multimodal two-dimensional functions for 
unconstrained global optimization with box constraints 
are in [1], [4], [7]. The 40 test problems by [8] have been 
coded in the Mathematica package: 
‘’ Optimization`UnconstrainedProblems` package’’. 
2 The origin of the scatter search is due to Glover [2]. 
3 The five scatter methods by [6] are: a diversification 
generation method (1), an improvement method (2), a 
reference set updating method (3), a reference subset 
generation method (4) and a combination method (5). 

diversification generation method. A set of trial 
solutions is generated at random and then used as 
initial points in the optimization process. 

2.1 Principle 
A stochastic search procedure is proposed in 

this study for finding all the minimizers.  It consists 
firstly in partitioning the rectangular search space. 
Thereafter, a starting point is selected at random in 
each sub-space. Then,  a local minimizer is searched 
in this area and neighboring areas. In the following, 
all the minimizers are sorted with respect to their 
objective value. The doubles are eliminated while a 
number of local minimizers is obtained. 

Figure 1 shows two techniques for selecting 
random points in the search domain. The first 
technique consists in drawing one point at random 
within a given arbitrary small sub-region. In the 
second technique, the same number of points is 
drawn in the whole feasible region of the 
optimization problem. A more homogenous 
distribution of the points is obtained with the first 
technique. In fact, several empty spaces (highlighted 
spaces in Figure 1) occur when using the second 
technique. 



 
Figure 1: Two techniques to generate a random 
population of points in a given feasible region. 

2.2 Bohachevsky Test Function 

The Bohachevsky two-dimensional test-
function [9], pp.79-80 yields a unique global 
minimum solution, and multiple, regular spaced, 
local optima. The function is 
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where [ ] [ ]1.5,1.5 1,1∈ − × −x . The surface and 
the contours of this function are pictured in Figure 
2. A hundred of points have been drawn at random, 
by using the first technique. Straight lines connect 
the initial random point that leads to the unique 
global minimum at ( )0,0=x . At this point, the 
function value is zero. 

 
Figure 2: Surface and contours of the Bohachevsky 
test-function. 

3. Multimodal Bivariate Test Function 
Test functions are commonly used to evaluate 

the performance of search algorithms in [8],[9]. The 
Shubert test function I is chosen for this experiment. 

3.1 Shubert Test Function I 
The two-dimensional  Shubert test function 

I for unconstrained global optimization is the 
trigonometric polynomial [5], [10]: 
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For which the search domain is [ ]2
 10,10∈ −x . 

The surface of the Shubert test function I is 



pictured in Figure 3, and the contours are shown 
in Figure 54. 

 
Figure 3: Clustered surface of the Shubert test 
function I. 

3.2 Searching the Global Minimizers 
The Figure 3 pictures nine clusters named 

‘’A’’ to ‘’I’’,  within a 3 3×  square. In each cluster, 
we can find  two close global minimum points, as in 
Figure 4. Therefore, there are 18 global minimizers 
in Table 1, for which the function value equals 
( )ˆ 186.731f = −x  for all.  

Let the global optima of clusters A  and B 

be denoted by 1
Ax , 2

Ax  and 1
Bx . The Euclidean 

distance between global minimizers are 
1 2 0.8836− =A Ax x  within one cluster, and 
1 1 6.2832− =A Bx x  between two neighboring 

clusters. Moreover, there are 742 exact local 
minimizers.  

                                                 
4 The surface of the Shubert function II with curvature 
control is pictured in the animated Figure 12  

 
Figure 4: Surface and contours of cluster E. 

Table 1: List of the 18 global minimizers. 

 Cluster  1x̂  2x̂  ( )ˆf x  

1x  2x  1x  2x  

A -7.7 -7.1 -7.1 -7.7 -186.7 

B -7.7 -0.8 -7.1 -1.4 -186.7 

C -7.7 5.5 -7.1 4.9 -186.7 

D -1.4 5.5 -0.8 4.9 -186.7 

E -1.4 -0.8 -0.8 -1.4 -186.7 

F -1.4 -7.1 -0.8 -7.7 -186.7 

G 4.9 5.5 5.5 4.9 -186.7 

H 4.9 -0.8 5.5 -1.4 -186.7 

I 4.9 -7.1 5.5 -7.7 -186.7 



3.3 Search for All the Minimizers 
At this stage, we are searching for all the 

global and local minimizers, which exact number is 

7605. The search domain [ ]2
10,10−  is  divided 

into 2500 squares, as in Figure 5. Inside each square 
(borders excluded), one point is drawn at random. 
Figure 5 pictures a population of random points.  

 

Figure 5: Generation of random initial points. 

Each random point is used as an initial point 
of a  search for a local minimum solution. Extending 
the calculation to all points of the population of the 
2500 points yields 716 local and global minimizers 
(760 existing minimizers). All of the 18 global 
minimizers have been found. The distribution of the 
minimizers  with respect to the function values is 
pictured in Figure 6. 

                                                 
5 We may rewrite (1) as the product of two identical 
functions for which the argument differs. The graph of 
this function exhibits 19 maximum solutions for which 
the function value is positive, and 20 minimum solutions 
for which the function value is negative (see Figure 10). 
Then, we can determine the total number of minimizers 

as ( )19 20 2 760× × = . 

 
Figure 6: Estimated distribution of all the 
minimizers. 

This process may be applied several times for 
different mesh accuracies, to get empirical 
distributions of all the results. 

3.4 Local Search within a Neighborhood 
Now, we are exploring the neighborhood of 

the global minimum  1x̂  of the cluster E. A 
population of numbered  random points  is 
generated, with the limitation to stay on or within a 

circle of unit radius centered at 1x̂ . Thereafter, each 
of these points is used as the initial value of a local 
search for a minimum solution. The obtained local 
minima (named “A”, “B”, “C”,…) are new points 
inside and outside the circular neighborhood. We 
may observe that the two global minimum solutions 
have been found. However other local minima are 
also found within the circular neighborhood and 
outside. In  Figure 7, straight lines connect the 
initial points to one of the two global optimum 
points in cluster E.  

The interest of this approach is to propose to 
the decision maker alternate local best solutions that 
could be preferred, due to the computational costs, 
or even for other environmental, economic, and 
social reasons. 



 
Figure 7: Neighborhood of a global minimum in 
cluster E.  

4. Conclusion 
This paper was devoted to the practical search of 

minimizers for highly multimodal functions. This 
study is centered on the trigonometric polynomial 
Shubert test functions I and II for experiments. A 
practical procedure is proposed to obtain the best 
technical solution and other comparable solutions (if 
any). Indeed, these alternative solutions may be of 
most interest for a decision maker, while 
considering other qualitative aspects of the decision 
making procedure. 

The contributions of this study are three-
fold. Firstly, a homogenous distribution of random 
points in the search region is proposed. Secondly, an 
empirical distribution of the minimizers is 
presented. Thirdly, an exploration of the 
neighborhood of a global minimum solution is 
effected to obtain other alternative solutions to the 
best technical solution. 

Acknowledgment: I would like to thank two 
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evaluations. 
 

Appendix A.  Random Search  for 
Global Optimization in Mathematica 
®6 

In the Mathematica® software [11], global and 
local optimization problems have specific 
primitives. The global optimization problems can be 
solved either by using  the primitive ‘Minimize[…]’ 
to get  an exact solution or with the help of  the 
primitive ‘NMinimize[…]  for solving  this problem 
numerically. The local optimization problems can 
be solved by using the primitive 
‘FindMinimum[…]. This presentation is focused on 
global optimization methods and on the random 
search approach. 

A.1. The ‘NMinimize’ Function 

The NMinimize Mathematica function is: 
NMinimize[{function, constraints}, {variables}]. 

Example A.1. Let the unconstrained boxed 
variables minimization problem, which bivariate 
objective function (Figure 8) is 
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where ( )1 2,x x≡x  and [ ]20,10∈x . 

The Mathematica  primitive with the default 
global optimization  method7 is: 
NMinimize[f[x1,x2],{x1,0,10},{x2,0,10}]. The 
result is: {-22.703,{x1→6.14711, x2→6.14711}}. 

                                                 
6 This appendix is inspired from the documentation 
provided by the Mathematica online help : ‘’Numerical 
Nonlinear Global Optimization’’ available at 
http://reference.wolfram.com.  
7 The default method depends on the type of optimization 
problem. For numeric functions, the Nelder-Mead 
simplex algorithm is first used. 

http://reference.wolfram.com/


 
Figure 8: Surface and contours of Example A.1. 

An initial rectangular region is needed for 
NMinimize to start. It is specified by using finite 
lower and upper bounds for each variable. This is 
done for each variable  either by defining { }, ,x a b  
with a b<  or by inserting the constraint 
a x b≤ ≤ . The default initial region is 

1 1x− ≤ ≤ . 

A.2. Global Optimization Methods 

The alternative algorithms in Mathematica  are 
“DifferentialEvolution” (DE), “NelderMead” (NM), 
“SimulatedAnnealing” (SA) and “RandomSearch” 
(RS). Then, a Mathematica primitive using the 
 random  search technique is 
NMinimize[f[x1,x2],{x1,0,10},{x2,0,10}, Method
→ ’’RandomSearch’’]. The results on   line RS of 
Table 2 yield a global optimum. 

 

 

Table 2: Global optimization algorithms. 

 Method
   

1x  
2x  ( )  f x  

 Optimum  

DE 5.322 5.3222 -38.078 global 
NM 9.166 9.1659 -22.703 local 
SA 5.322 9.1657 -30.391 local 
RS 5.322 5.3222 -38.078 global 
 
A.3. The ‘RandomSearch’ Method 

A population of initial points is generated 
randomly by using the random search algorithm. 
Thereafter, a local minimum is searched for each of 
the  initial points8 by using the Mathematica 
primitive ‘FindMinimum[…]’9. The solution is the 
best local minimum. 

For this example, the random initial points have 
generated by using the primitive10 
Random[Real,{a,b}], where a<b. Twenty points 
have been generated for this application and placed 
into a file, named ‘data’.  The local minimizations 
for  all of the 20  initial points, use the primitive:  
Do[[FindMinimum[f[x1,x2],{x1,data[[i,1]]},{x2,dat
a[[I,2]]}],{i,20}].  Figure 9 illustrates the position of 
the random initial points, that of the unique global, 
and of the eight local minimizers. A straight line 
relates the initial random points that reach the global 
optimum. 

                                                 
8 The default number of initial points is 

{ }min 10 ,100n , i.e. 20 points for a bivariate function 
for which 2n = . A population of 100 points can be 
obtained by changing the Method option, as follows:  
Method→ {’’RandomSearch’’,’’RandomPoints’’→
100}. 
9 The possible settings for the Method option are : 
‘’ ConjugateGradient’’, ‘’PrincipalAxis’’, ‘’LevenbergM
arquardt’, ‘’Newton ‘’, ’QuasiNewton’’,  ‘’InteriorPoint’’ 
and ‘’ LinearProgramming’’. 
10 The primitive Random[type,range] gives a 
pseudorandom number of the type integer, real or 
complex in the specified range. 



 
Figure 9: Random initial points and all minima. 

Appendix B.  All the Minimizers of 
Shubert Test Function I 

We can rewrite ( )f x  in  (1) as: 

( ) ( ) ( )
1 2

,f u x u x= ×x  
where 
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Figure 10 pictures the component function  ( )u x . 
The maximum solutions and the minimum solutions 
are in Table 3. Since the 20 1 19− =  maximum 
solutions are characterized by positive function 
values and the 20 minimum solutions by negative 
function values of ( )u x , we can easily deduce that 

the exact number of minimizers of ( )f x  will be 

( )( )20 1 20 2 760− × × = . The 760 minimizers 
are plotted in Figure 11: small size points are the 
742 local minimizers and large size points are the 18 
global minimizers. 

Table 3: Optimum solutions of ( )u x  

 minimum maximum 

  x  ( ) 
u x  

 x  ( ) 
u x  

1 -9.7804 -2.6396 -10.0 -0.2583 

2 -8.7941 -3.5877 -9.2863 3.6137 

3 -7.7083 -12.8709 -8.2904 6.1698 

4 -6.4786 -8.5178 -7.0835 14.508 

5 -5.4614 -3.750 -5.9489 3.8473 

6 -4.4775 -2.7288 -4.9632 2.9276 

7 -3.4973 -2.6396 -3.9840 2.9257 

8 -2.5109 -3.5877 -3.0032 3.6137 

9 -1.4251 -12.8709 -2.0072 6.1698 

10 -0.1954 -8.5178 -0.8003 14.5080 

11 0.8218 -3.750 0.3342 3.8473 

12 1.8057 -2.7288 1.3200 2.9276 

13 2.7859 -2.6396 2.2992 2.9257 

14 3.7723 -3.5877 3.2800 3.6137 

15 4.8581 -12.8709 4.2760 6.1698 

16 6.0878 -8.5178 5.4829 14.5080 

17 7.1050 -3.7500 6.6174 3.8473 

18 8.0888 -2.7288 7.6032 2.9276 

19 9.0691 -2.6396 8.5824 2.9257 

20 10.000 -3.3435 9.5632 3.6137 

 

 

Figure 10: Component function ( )u x  



 

Figure 11: All minimizers of the Shubert’s test 
function I. 

Appendix C.  Shubert Test 
Function II 

The two-dimensional Shubert function II is 

( ) ( )( )

( ) ( )( )2 2

1 2

2 5
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where β  denotes the curvature control. One 
animation11 for this function is pictured in Figure 
12. 
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Figure 12: Shubert test function II. 


